Do you want to publish a course? Click here

Ultra-Steep Spectrum Radio `Jellyfish Uncovered in Abell 2877

96   0   0.0 ( 0 )
 Added by Torrance Hodgson
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the discovery of a mysterious ultra-steep spectrum (USS) synchrotron source in the galaxy cluster Abell 2877. We have observed the source with the Murchison Widefield Array at five frequencies across 72-231 MHz and have found the source to exhibit strong spectral curvature over this range as well the steepest known spectra of a synchrotron cluster source, with a spectral index across the central three frequency bands of $alpha = -5.97^{+0.40}_{-0.48}$. Higher frequency radio observations, including a deep observation with the Australia Telescope Compact Array, fail to detect any of the extended diffuse emission. The source is approximately 370 kpc wide and bears an uncanny resemblance to a jellyfish with two peaks of emission and long tentacles descending south towards the cluster centre. Whilst the `USS Jellyfish defies easy classification, we here propose that the phenomenon is caused by the reacceleration and compression of multiple aged electron populations from historic active galactic nucleus (AGN) activity, so-called `radio phoenix, by an as yet undetected weak cluster-scale mechanism. The USS Jellyfish adds to a growing number of radio phoenix in cool-core clusters with unknown reacceleration mechanisms; as the first example of a polyphoenix, however, this implies the mechanism is on the scale of the cluster itself. Indeed, we show that in simulations, emission akin to the USS Jellyfish can be produced as a short-lived, transient phase in the evolution of multiple interacting AGN remnants when subject to weak external shocks.



rate research

Read More

We present newly discovered radio emission in the galaxy cluster Abell 2443 which is (1) diffuse, (2) extremely steep spectrum, (3) offset from the cluster center, (4) of irregular morphology and (5) not clearly associated with any of the galaxies within the cluster. The most likely explanation is that this emission is a cluster radio relic, associated with a cluster merger. We present deep observations of Abell 2443 at multiple low frequencies (1425, 325 and 74 MHz) which help characterize the spectrum and morphology of this relic. Based on the curved spectral shape of the relic emission and the presence of small scale structure, we suggest that this new source is likely a member of the radio phoenix class of radio relics.
A number of radio observations have revealed the presence of large synchrotron-emitting sources associated with the intra-cluster medium. There is strong observational evidence that the emitting particles have been (re-)accelerated by shocks and turbulence generated during merger events. The particles that are accelerated are thought to have higher initial energies than those in the thermal pool but the origin of such mildly relativistic particles remains uncertain and needs to be further investigated. The galaxy cluster Abell 1914 is a massive galaxy cluster in which X-ray observations show clear evidence of merging activity. We carried out radio observations of this cluster with the LOw Frequency ARay (LOFAR) at 150 MHz and the Giant Metrewave Radio Telescope (GMRT) at 610 MHz. We also analysed Very Large Array (VLA) 1.4 GHz data, archival GMRT 325 MHz data, CFHT weak lensing data and Chandra observations. Our analysis shows that the ultra-steep spectrum source (4C38.39; $alpha lesssim -2$), previously thought to be part of a radio halo, is a distinct source with properties that are consistent with revived fossil plasma sources. Finally, we detect some diffuse emission to the west of the source 4C38.39 that could belong to a radio halo.
Diffuse, non-thermal emission in galaxy clusters is increasingly being detected in low-frequency radio surveys and images. We present a new diffuse, steep-spectrum, non-thermal radio source within the cluster Abell 1127 found in survey data from the Murchison Widefield Array (MWA). We perform follow-up observations with the extended configuration MWA Phase II with improved resolution to better resolve the source and measure its low-frequency spectral properties. We use archival Very Large Array S-band data to remove the discrete source contribution from the MWA data, and from a power law model fit we find a spectral index of $-1.83pm0.29$ broadly consistent with relic-type sources. The source is revealed by the Giant Metrewave Radio Telescope (GMRT) at 150 MHz to have an elongated morphology, with a projected linear size of 850 kpc as measured in the MWA data. Using Chandra observations we derive morphological estimators and confirm quantitatively that the cluster is in a disturbed dynamical state, consistent with the majority of phoenices and relics being hosted by merging clusters. We discuss the implications of relying on morphology and low-resolution imaging alone for the classification of such sources and highlight the usefulness of the MHz to GHz radio spectrum in classifying these types of emission. Finally, we discuss the benefits and limitations of using the MWA Phase II in conjunction with other instruments for detailed studies of diffuse, steep-spectrum, non-thermal radio emission within galaxy clusters.
170 - D. Anish Roshi 2012
A compact steep spectrum radio source (J0535-0452) is located in the sky coincident with a bright optical rim in the HII region NGC1977. J0535-0452 is observed to be $leq 100$ mas in angular size at 8.44 GHz. The spectrum for the radio source is steep and straight with a spectral index of -1.3 between 330 and 8440 MHz. No 2 mu m IR counter part for the source is detected. These characteristics indicate that the source may be either a rare high redshift radio galaxy or a millisecond pulsar (MSP). Here we investigate whether the steep spectrum source is a millisecond pulsar.The optical rim is believed to be the interface between the HII region and the adjacent molecular cloud. If the compact source is a millisecond pulsar, it would have eluded detection in previous pulsar surveys because of the extreme scattering due to the HII region--molecular cloud interface. The limits obtained on the angular broadening along with the distance to the scattering screen are used to estimate the pulse broadening. The pulse broadening is shown to be less than a few msec at frequencies $gtsim$ 5 GHz. We therefore searched for pulsed emission from J0535-0452 at 14.8 and 4.8 GHz with the Green Bank Telescope (GBT). No pulsed emission is detected to 55 and 30 mu Jy level at 4.8 and 14.8 GHz. Based on the parameter space explored by our pulsar search algorithm, we conclude that, if J0535-0452 is a pulsar, then it could only be a binary MSP of orbital period $ltsim$ 5 hrs.
We present optical spectroscopy of 62 objects selected from several samples of ultra steep spectrum (USS) radio sources. 46 of these are from our primary catalog, consisting of 669 sources with radio spectral indices alpha < -1.30 (S_nu ~ nu^alpha); this first spectroscopic sub-sample was selected on the basis of their faint optical and near-IR identifications. Most are identified as narrow-lined radio galaxies with redshifts ranging from z=0.25 to z=5.19. Ten objects are at z>3, nearly doubling the number of such sources known to date. Four of the USS radio sources are identified with quasars, of which at least three have very red spectral energy distributions. The source TN J0936-2242 is identified with an extremely red object (ERO, R-K>5); both it and a close companion are at z=1.479. The spectrum of the ERO closely resembles that of previously discovered radio galaxies at z~1.5. Five sources show continuum emission, but fail to show any clear emission or absorption features, despite integrations of ~1 h with the Keck telescope. We suggest that these objects could be (i) radio galaxies with faint emission lines in the ``redshift desert at 1.5 <~ z <~ 2.3, (ii) radio galaxies with an obscured AGN, which are dominated by a stellar continuum observed with insufficient S/N, or (iii) pulsars. Three radio sources identified with faint objects in the K-band images remain undetected in 50-90 min spectroscopic integrations with the Keck telescope, and are possible z>7 candidates.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا