Do you want to publish a course? Click here

Finite-size effects on the convergence time in continuous-opinion dynamics

111   0   0.0 ( 0 )
 Added by Hang-Hyun Jo
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study finite-size effects on the convergence time in a continuous-opinion dynamics model. In the model, each individuals opinion is represented by a real number on a finite interval, e.g., $[0,1]$, and a uniformly randomly chosen individual updates its opinion by partially mimicking the opinion of a uniformly randomly chosen neighbor. We numerically find that the characteristic time to the convergence increases as the system size increases according to a particular functional form in the case of lattice networks. In contrast, unless the individuals perfectly copy the opinion of their neighbors in each opinion updating, the convergence time is approximately independent of the system size in the case of regular random graphs, uncorrelated scale-free networks, and complete graphs. We also provide a mean-field analysis of the model to understand the case of the complete graph.



rate research

Read More

111 - Andre C. R. Martins 2008
In this article, I investigate the use of Bayesian updating rules applied to modeling social agents in the case of continuos opinions models. Given another agent statement about the continuous value of a variable $x$, we will see that interesting dynamics emerge when an agent assigns a likelihood to that value that is a mixture of a Gaussian and a Uniform distribution. This represents the idea the other agent might have no idea about what he is talking about. The effect of updating only the first moments of the distribution will be studied. and we will see that this generates results similar to those of the Bounded Confidence models. By also updating the second moment, several different opinions always survive in the long run. However, depending on the probability of error and initial uncertainty, those opinions might be clustered around a central value.
123 - Andre C. R. Martins 2008
A model where agents show discrete behavior regarding their actions, but have continuous opinions that are updated by interacting with other agents is presented. This new updating rule is applied to both the voter and Sznajd models for interaction between neighbors and its consequences are discussed. The appearance of extremists is naturally observed and it seems to be a characteristic of this model.
Recently, social phenomena have received a lot of attention not only from social scientists, but also from physicists, mathematicians and computer scientists, in the emerging interdisciplinary field of complex system science. Opinion dynamics is one of the processes studied, since opinions are the drivers of human behaviour, and play a crucial role in many global challenges that our complex world and societies are facing: global financial crises, global pandemics, growth of cities, urbanisation and migration patterns, and last but not least important, climate change and environmental sustainability and protection. Opinion formation is a complex process affected by the interplay of different elements, including the individual predisposition, the influence of positive and negative peer interaction (social networks playing a crucial role in this respect), the information each individual is exposed to, and many others. Several models inspired from those in use in physics have been developed to encompass many of these elements, and to allow for the identification of the mechanisms involved in the opinion formation process and the understanding of their role, with the practical aim of simulating opinion formation and spreading under various conditions. These modelling schemes range from binary simple models such as the voter model, to multi-dimensional continuous approaches. Here, we provide a review of recent methods, focusing on models employing both peer interaction and external information, and emphasising the role that less studied mechanisms, such as disagreement, has in driving the opinion dynamics. [...]
266 - Jian-Yue Guan , Zhi-Xi Wu , 2007
We study the effects of inhomogeneous influence of individuals on collective phenomena. We focus analytically on a typical model of the majority rule, applied to the completely connected agents. Two types of individuals $A$ and $B$ with different influence activity are introduced. The individuals $A$ and $B$ are distributed randomly with concentrations $ u$ and $1- u$ at the beginning and fixed further on. Our main result is that the location of the order-disorder transition is affected due to the introduction of the inhomogeneous influence. This result highlights the importance of inhomogeneous influence between different types of individuals during the process of opinion updating.
In this work we tackle a kinetic-like model of opinions dynamics in a networked population endued with a quenched plurality and polarization. Additionally, we consider pairwise interactions that are restrictive, which is modeled with a smooth bounded confidence. Our results show the interesting emergence of nonequilibrium hysteresis and heterogeneity-assisted ordering. Such counterintuitive phenomena are robust to different types of network architectures such as random, small-world and scale-free.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا