Do you want to publish a course? Click here

Bayesian Updating Rules in Continuous Opinion Dynamics Models

111   0   0.0 ( 0 )
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this article, I investigate the use of Bayesian updating rules applied to modeling social agents in the case of continuos opinions models. Given another agent statement about the continuous value of a variable $x$, we will see that interesting dynamics emerge when an agent assigns a likelihood to that value that is a mixture of a Gaussian and a Uniform distribution. This represents the idea the other agent might have no idea about what he is talking about. The effect of updating only the first moments of the distribution will be studied. and we will see that this generates results similar to those of the Bounded Confidence models. By also updating the second moment, several different opinions always survive in the long run. However, depending on the probability of error and initial uncertainty, those opinions might be clustered around a central value.



rate research

Read More

123 - Andre C. R. Martins 2021
Traditional opinion dynamics models are simple and yet, enough to explore the consequences in basic scenarios. But, to better describe problems such as polarization and extremism, we might need to include details about human biases and other cognitive characteristics. In this paper, I explain how we can describe and use mental models and assumptions of the agents using Bayesian-inspired model building. The relationship between human rationality and Bayesian methods will be explored, and we will see that Bayesian ideas can indeed be used to explain how humans reason. We will see how to use Bayesian-inspired rules using the simplest version of the Continuous Opinions and Discrete Actions (CODA) model. From that, we will explore how we can obtain update rules that include human behavioral characteristics such as confirmation bias, motivated reasoning, or our tendency to change opinions much less than we should. Keywords: Opinion dynamics, Bayesian methods, Cognition, CODA, Agent-based models
122 - Andre C. R. Martins 2008
A model where agents show discrete behavior regarding their actions, but have continuous opinions that are updated by interacting with other agents is presented. This new updating rule is applied to both the voter and Sznajd models for interaction between neighbors and its consequences are discussed. The appearance of extremists is naturally observed and it seems to be a characteristic of this model.
Recently, social phenomena have received a lot of attention not only from social scientists, but also from physicists, mathematicians and computer scientists, in the emerging interdisciplinary field of complex system science. Opinion dynamics is one of the processes studied, since opinions are the drivers of human behaviour, and play a crucial role in many global challenges that our complex world and societies are facing: global financial crises, global pandemics, growth of cities, urbanisation and migration patterns, and last but not least important, climate change and environmental sustainability and protection. Opinion formation is a complex process affected by the interplay of different elements, including the individual predisposition, the influence of positive and negative peer interaction (social networks playing a crucial role in this respect), the information each individual is exposed to, and many others. Several models inspired from those in use in physics have been developed to encompass many of these elements, and to allow for the identification of the mechanisms involved in the opinion formation process and the understanding of their role, with the practical aim of simulating opinion formation and spreading under various conditions. These modelling schemes range from binary simple models such as the voter model, to multi-dimensional continuous approaches. Here, we provide a review of recent methods, focusing on models employing both peer interaction and external information, and emphasising the role that less studied mechanisms, such as disagreement, has in driving the opinion dynamics. [...]
110 - Hang-Hyun Jo , Naoki Masuda 2021
We study finite-size effects on the convergence time in a continuous-opinion dynamics model. In the model, each individuals opinion is represented by a real number on a finite interval, e.g., $[0,1]$, and a uniformly randomly chosen individual updates its opinion by partially mimicking the opinion of a uniformly randomly chosen neighbor. We numerically find that the characteristic time to the convergence increases as the system size increases according to a particular functional form in the case of lattice networks. In contrast, unless the individuals perfectly copy the opinion of their neighbors in each opinion updating, the convergence time is approximately independent of the system size in the case of regular random graphs, uncorrelated scale-free networks, and complete graphs. We also provide a mean-field analysis of the model to understand the case of the complete graph.
In this work we study a model of opinion dynamics considering activation/deactivation of agents. In other words, individuals are not static and can become inactive and drop out from the discussion. A probability $w$ governs the deactivation dynamics, whereas social interactions are ruled by kinetic exchanges, considering competitive positive/negative interactions. Inactive agents can become active due to interactions with active agents. Our analytical and numerical results show the existence of two distinct nonequilibrium phase transitions, with the occurrence of three phases, namely ordered (ferromagnetic-like), disordered (paramagnetic-like) and absorbing phases. The absorbing phase represents a collective state where all agents are inactive, i.e., they do not participate on the dynamics, inducing a frozen state. We determine the critical value $w_c$ above which the system is in the absorbing phase independently of the other parameters. We also verify a distinct critical behavior for the transitions among different phases.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا