No Arabic abstract
Open Science, Reproducible Research, Findable, Accessible, Interoperable and Reusable (FAIR) data principles are long term goals for scientific dissemination. However, the implementation of these principles calls for a reinspection of our means of dissemination. In our viewpoint, we discuss and advocate, in the context of nonlinear science, how a notebook article represents an essential step toward this objective by fully embracing cloud computing solutions. Notebook articles as scholar articles offer an alternative, efficient and more ethical way to disseminate research through their versatile environment. This format invites the readers to delve deeper into the reported research. Through the interactivity of the notebook articles, research results such as for instance equations and figures are reproducible even for non-expert readers. The codes and methods are available, in a transparent manner, to interested readers. The methods can be reused and adapted to answer additional questions in related topics. The codes run on cloud computing services, which provide easy access, even to low-income countries and research groups. The versatility of this environment provides the stakeholders - from the researchers to the publishers - with opportunities to disseminate the research results in innovative ways.
Research on the construction of traditional information science methodology taxonomy is mostly conducted manually. From the limited corpus, researchers have attempted to summarize some of the research methodology entities into several abstract levels (generally three levels); however, they have been unable to provide a more granular hierarchy. Moreover, updating the methodology taxonomy is traditionally a slow process. In this study, we collected full-text academic papers related to information science. First, we constructed a basic methodology taxonomy with three levels by manual annotation. Then, the word vectors of the research methodology entities were trained using the full-text data. Accordingly, the research methodology entities were clustered and the basic methodology taxonomy was expanded using the clustering results to obtain a methodology taxonomy with more levels. This study provides new concepts for constructing a methodology taxonomy of information science. The proposed methodology taxonomy is semi-automated; it is more detailed than conventional schemes and the speed of taxonomy renewal has been enhanced.
Developers in data science and other domains frequently use computational notebooks to create exploratory analyses and prototype models. However, they often struggle to incorporate existing software engineering tooling into these notebook-based workflows, leading to fragile development processes. We introduce Assembl{e}, a new development environment for collaborative data science projects, in which promising code fragments of data science pipelines can be contributed as pull requests to an upstream repository entirely from within JupyterLab, abstracting away low-level version control tool usage. We describe the design and implementation of Assembl{e} and report on a user study of 23 data scientists.
Questionable publications have been accused of greedy practices; however, their influence on academia has not been gauged. Here, we probe the impact of questionable publications through a systematic and comprehensive analysis with various participants from academia and compare the results with those of their unaccused counterparts using billions of citation records, including liaisons, e.g., journals and publishers, and prosumers, e.g., authors. The analysis reveals that questionable publications embellished their citation scores by attributing publisher-level self-citations to their journals while also controlling the journal-level self-citations to circumvent the evaluation of journal-indexing services. This approach makes it difficult to detect malpractice by conventional journal-level metrics. We propose journal-publisher-hybrid metric that help detect malpractice. We also demonstrate that the questionable publications had a weaker disruptiveness and influence than their counterparts. This indicates the negative effect of suspicious publishers in the academia. The findings provide a basis for actionable policy making against questionable publications.
In this article, we analyze the citations to articles published in 11 biological and medical journals from 2003 to 2007 that employ author-choice open access models. Controlling for known explanatory predictors of citations, only 2 of the 11 journals show positive and significant open access effects. Analyzing all journals together, we report a small but significant increase in article citations of 17%. In addition, there is strong evidence to suggest that the open access advantage is declining by about 7% per year, from 32% in 2004 to 11% in 2007.
We present the results of a large-scale study of potentially predatory journals (PPJ) represented in the Scopus database, which is widely used for research evaluation. Both journal metrics and country, disciplinary data have been evaluated for different groups of PPJ: those listed by Jeffrey Beall and those delisted by Scopus because of publication concerns. Our results show that even after years of delisting, PPJ are still highly visible in the Scopus database with hundreds of active potentially predatory journals. PPJ papers are continuously produced by all major countries, but with different shares. All major subject areas are affected. The largest number of PPJ papers are in engineering and medicine. On average, PPJ have much lower citation metrics than other Scopus-indexed journals. We conclude with a brief survey of the case of Kazakhstan where the share of PPJ papers at one time amounted to almost a half of all Kazakhstan papers in Scopus, and propose a link between PPJ share and national research evaluation policies (in particular, rules of awarding academic degrees). The progress of potentially predatory journal research will be increasingly important because such evaluation methods are becoming more widespread in times of the Metric Tide.