Do you want to publish a course? Click here

Investigating the Exchange of Ising Chains on a Digital Quantum Computer

48   0   0.0 ( 0 )
 Added by Javad Shabani
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The ferromagnetic state of an Ising chain can represent a two-fold degenerate subspace or equivalently a logical qubit which is protected from excitations by an energy gap. We study a a braiding-like exchange operation through the movement of the state in the qubit subspace which resembles that of the localized edge modes in a Kitaev chain. The system consists of two Ising chains in a 1D geometry where the operation is simulated through the adiabatic time evolution of the ground state. The time evolution is implemented via the Suzuki-Trotter expansion on basic single- and two-qubit quantum gates using IBMs Aer QASM simulator. The fidelity of the system is investigated as a function of the evolution and system parameters to obtain optimum efficiency and accuracy for different system sizes. Various aspects of the implementation including the circuit depth, Trotterization error, and quantum gate errors pertaining to the Noisy Intermediate-Scale Quantum (NISQ) hardware are discussed as well. We show that the quantum gate errors, i.e. bit-flip, phase errors, are the dominating factor in determining the fidelity of the system as the Trotter error and the adiabatic condition are less restrictive even for modest values of Trotter time steps. We reach an optimum fidelity $>99%$ on systems of up to $11$ sites per Ising chain and find that the most efficient implementation of a single braiding-like operation for a fidelity above $90%$ requires a circuit depth of the order of $sim 10^{3}$ restricting the individual gate errors to be less than $sim 10^{-6}$ which is prohibited in current NISQ hardware.



rate research

Read More

The determination of the ground state of quantum many-body systems via digital quantum computers rests upon the initialization of a sufficiently educated guess. This requirement becomes more stringent the greater the system. Preparing physically-motivated ans{a}tze on quantum hardware is therefore important to achieve quantum advantage in the simulation of correlated electrons. In this spirit, we introduce the Gutzwiller Wave Function (GWF) within the context of the digital quantum simulation of the Fermi-Hubbard model. We present a quantum routine to initialize the GWF that comprises two parts. In the first, the noninteracting state associated with the $U = 0$ limit of the model is prepared. In the second, the non-unitary Gutzwiller projection that selectively removes states with doubly-occupied sites from the wave function is performed by adding to every lattice site an ancilla qubit, the measurement of which in the $|0rangle$ state confirms the projection was made. Due to its non-deterministic nature, we estimate the success rate of the algorithm in generating the GWF as a function of the lattice size and the interaction strength $U/t$. The scaling of the quantum circuit metrics and its integration in general quantum simulation algorithms are also discussed.
We use NMR quantum simulators to study antiferromagnetic Ising spin chains undergoing quantum phase transitions. Taking advantage of the sensitivity of the systems near criticality, we detect the critical points of the transitions using a direct measurement of the Loschmidt echo. We test our simulators for spin chains of even and odd numbers of spins, and compare the experimental results to theoretical predictions.
In the present paper, we construct quantum Markov chains (QMC) over the Comb graphs. As an application of this construction, it is proved the existence of the disordered phase for the Ising type models (within QMC scheme) over the Comb graphs. Moreover, it is also established that the associated QMC has clustering property with respect to translations of the graph. We stress that this paper is the first one where a nontrivial example of QMC over non-regular graphs is given.
We present efficient quantum algorithms for simulating time-dependent Hamiltonian evolution of general input states using an oracular model of a quantum computer. Our algorithms use either constant or adaptively chosen time steps and are significant because they are the first to have time-complexities that are comparable to the best known methods for simulating time-independent Hamiltonian evolution, given appropriate smoothness criteria on the Hamiltonian are satisfied. We provide a thorough cost analysis of these algorithms that considers discretizion errors in both the time and the representation of the Hamiltonian. In addition, we provide the first upper bounds for the error in Lie-Trotter-Suzuki approximations to unitary evolution operators, that use adaptively chosen time steps.
For variational algorithms on the near term quantum computing hardware, it is highly desirable to use very accurate ansatze with low implementation cost. Recent studies have shown that the antisymmetrized geminal power (AGP) wavefunction can be an excellent starting point for ansatze describing systems with strong pairing correlations, as those occurring in superconductors. In this work, we show how AGP can be efficiently implemented on a quantum computer with circuit depth, number of CNOTs, and number of measurements being linear in system size. Using AGP as the initial reference, we propose and implement a unitary correlator on AGP and benchmark it on the ground state of the pairing Hamiltonian. The results show highly accurate ground state energies in all correlation regimes of this model Hamiltonian.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا