Do you want to publish a course? Click here

Direct observation of quantum criticality in Ising spin chains

262   0   0.0 ( 0 )
 Added by Luzh
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use NMR quantum simulators to study antiferromagnetic Ising spin chains undergoing quantum phase transitions. Taking advantage of the sensitivity of the systems near criticality, we detect the critical points of the transitions using a direct measurement of the Loschmidt echo. We test our simulators for spin chains of even and odd numbers of spins, and compare the experimental results to theoretical predictions.



rate research

Read More

Entanglement in quantum XY spin chains of arbitrary length is investigated via a recently-developed global measure suitable for generic quantum many-body systems. The entanglement surface is determined over the phase diagram, and found to exhibit structure richer than expected. Near the critical line, the entanglement is peaked (albeit analytically), consistent with the notion that entanglement--the non-factorization of wave functions--reflects quantum correlations. Singularity does, however, accompany the critical line, as revealed by the divergence of the field-derivative of the entanglement along the line. The form of this singularity is dictated by the universality class controlling the quantum phase transition.
Frustration-free (FF) spin chains have a property that their ground state minimizes all individual terms in the chain Hamiltonian. We ask how entangled the ground state of a FF quantum spin-s chain with nearest-neighbor interactions can be for small values of s. While FF spin-1/2 chains are known to have unentangled ground states, the case s=1 remains less explored. We propose the first example of a FF translation-invariant spin-1 chain that has a unique highly entangled ground state and exhibits some signatures of a critical behavior. The ground state can be viewed as the uniform superposition of balanced strings of left and right parentheses separated by empty spaces. Entanglement entropy of one half of the chain scales as log(n)/2 + O(1), where n is the number of spins. We prove that the energy gap above the ground state is polynomial in 1/n. The proof relies on a new result concerning statistics of Dyck paths which might be of independent interest.
We show that a chain of Heisenberg spins interacting with long-range dipolar forces in a magnetic field h perpendicular to the chain exhibits a quantum critical point belonging to the two-dimensional Ising universality class. Within linear spin-wave theory the magnon dispersion for small momenta k is [Delta^2 + v_k^2 k^2]^{1/2}, where Delta^2 propto |h - h_c| and v_k^2 propto |ln k|. For fields close to h_c linear spin-wave theory breaks down and we investigate the system using density-matrix and functional renormalization group methods. The Ginzburg regime where non-Gaussian fluctuations are important is found to be rather narrow on the ordered side of the transition, and very broad on the disordered side.
We study the infinite-temperature properties of an infinite sequence of random quantum spin chains using a real-space renormalization group approach, and demonstrate that they exhibit non-ergodic behavior at strong disorder. The analysis is conveniently implemented in terms of SU(2)$_k$ anyon chains that include the Ising and Potts chains as notable examples. Highly excited eigenstates of these systems exhibit properties usually associated with quantum critical ground states, leading us to dub them quantum critical glasses. We argue that random-bond Heisenberg chains self-thermalize and that the excited-state entanglement crosses over from volume-law to logarithmic scaling at a length scale that diverges in the Heisenberg limit $krightarrowinfty$. The excited state fixed points are generically distinct from their ground state counterparts, and represent novel non-equilibrium critical phases of matter.
Periodically driven Floquet quantum systems provide a promising platform to investigate novel physics out of equilibrium. Unfortunately, the drive generically heats up the system to a featureless infinite temperature state. For large driving frequency, the heat absorption rate is predicted to be exponentially small, giving rise to a long-lived prethermal regime which exhibits all the intriguing properties of Floquet systems. Here we experimentally observe Floquet prethermalization using nuclear magnetic resonance techniques. We first show the relaxation of a far-from-equilibrium initial state to a long-lived prethermal state, well described by the time-independent prethermal Hamiltonian. By measuring the autocorrelation of this prethermal Hamiltonian we can further experimentally confirm the predicted exponentially slow heating rate. More strikingly, we find that in the timescale when the effective Hamiltonian picture breaks down, the Floquet system still possesses other quasi-conservation laws. Our results demonstrate that it is possible to realize robust Floquet engineering, thus enabling the experimental observation of non-trivial Floquet phases of matter.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا