Do you want to publish a course? Click here

A Large Hadron Electron Collider at CERN: Report on the Physics and Design Concepts for Machine and Detector

188   0   0.0 ( 0 )
 Added by Paul Laycock
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

The physics programme and the design are described of a new collider for particle and nuclear physics, the Large Hadron Electron Collider (LHeC), in which a newly built electron beam of 60 GeV, up to possibly 140 GeV, energy collides with the intense hadron beams of the LHC. Compared to HERA, the kinematic range covered is extended by a factor of twenty in the negative four-momentum squared, $Q^2$, and in the inverse Bjorken $x$, while with the design luminosity of $10^{33}$ cm$^{-2}$s$^{-1}$ the LHeC is projected to exceed the integrated HERA luminosity by two orders of magnitude. The physics programme is devoted to an exploration of the energy frontier, complementing the LHC and its discovery potential for physics beyond the Standard Model with high precision deep inelastic scattering measurements. These are designed to investigate a variety of fundamental questions in strong and electroweak interactions. The physics programme also includes electron-deuteron and electron-ion scattering in a $(Q^2, 1/x)$ range extended by four orders of magnitude as compared to previous lepton-nucleus DIS experiments for novel investigations of neutrons and nuclear structure, the initial conditions of Quark-Gluon Plasma formation and further quantum chromodynamic phenomena. The LHeC may be realised either as a ring-ring or as a linac-ring collider. Optics and beam dynamics studies are presented for bo



rate research

Read More

This paper presents a review of the recent Machine Learning activities carried out on beam measurements performed at the CERN Large Hadron Collider. This paper has been accepted for publication in IEEE Instrumentation and Measurement Magazine and in the published version no abstract is provided.
115 - Henry J. Frisch 2018
This is a personal and admittedly US-centric attempt to summarize the foundational impact of the Pisa CDF Group on the conceptual design, construction, and early operation of the CDF Detector at Fermilab. I have tried to go back to original documents where possible.
Machine learning entails a broad range of techniques that have been widely used in Science and Engineering since decades. High-energy physics has also profited from the power of these tools for advanced analysis of colliders data. It is only up until recently that Machine Learning has started to be applied successfully in the domain of Accelerator Physics, which is testified by intense efforts deployed in this domain by several laboratories worldwide. This is also the case of CERN, where recently focused efforts have been devoted to the application of Machine Learning techniques to beam dynamics studies at the Large Hadron Collider (LHC). This implies a wide spectrum of applications from beam measurements and machine performance optimisation to analysis of numerical data from tracking simulations of non-linear beam dynamics. In this paper, the LHC-related applications that are currently pursued are presented and discussed in detail, paying also attention to future developments.
The design of a primary electron beam facility at CERN is described. The study has been carried out within the framework of the wider Physics Beyond Colliders study. It re-enables the Super Proton Synchrotron (SPS) as an electron accelerator, and leverages the development invested in Compact Linear Collider (CLIC) technology for its injector and as an accelerator research and development infrastructure. The facility would be relevant for several of the key priorities in the 2020 update of the European Strategy for Particle Physics, such as an electron-positron Higgs factory, accelerator R&D, dark sector physics, and neutrino physics. In addition, it could serve experiments in nuclear physics. The electron beam delivered by this facility would provide access to light dark matter production significantly beyond the targets predicted by a thermal dark matter origin, and for natures of dark matter particles that are not accessible by direct detection experiments. It would also enable electro-nuclear measurements crucial for precise modelling the energy dependence of neutrino-nucleus interactions, which is needed to precisely measure neutrino oscillations as a function of energy. The implementation of the facility is the natural next step in the development of X-band high-gradient acceleration technology, a key technology for compact and cost-effective electron/positron linacs. It would also become the only facility with multi-GeV drive bunches and truly independent electron witness bunches for plasma wakefield acceleration. A second phase capable to deliver positron witness bunches would make it a complete facility for plasma wakefield collider studies. [...]
This document provides a brief overview of the recently published report on the design of the Large Hadron Electron Collider (LHeC), which comprises its physics programme, accelerator physics, technology and main detector concepts. The LHeC exploits and develops challenging, though principally existing, accelerator and detector technologies. This summary is complemented by brief illustrations of some of the highlights of the physics programme, which relies on a vastly extended kinematic range, luminosity and unprecedented precision in deep inelastic scattering. Illustrations are provided regarding high precision QCD, new physics (Higgs, SUSY) and electron-ion physics. The LHeC is designed to run synchronously with the LHC in the twenties and to achieve an integrated luminosity of O(100) fb$^{-1}$. It will become the cleanest high resolution microscope of mankind and will substantially extend as well as complement the investigation of the physics of the TeV energy scale, which has been enabled by the LHC.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا