Do you want to publish a course? Click here

PcmNet: Position-Sensitive Context Modeling Network for Temporal Action Localization

96   0   0.0 ( 0 )
 Added by Xi Li
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Temporal action localization is an important and challenging task that aims to locate temporal regions in real-world untrimmed videos where actions occur and recognize their classes. It is widely acknowledged that video context is a critical cue for video understanding, and exploiting the context has become an important strategy to boost localization performance. However, previous state-of-the-art methods focus more on exploring semantic context which captures the feature similarity among frames or proposals, and neglect positional context which is vital for temporal localization. In this paper, we propose a temporal-position-sensitive context modeling approach to incorporate both positional and semantic information for more precise action localization. Specifically, we first augment feature representations with directed temporal positional encoding, and then conduct attention-based information propagation, in both frame-level and proposal-level. Consequently, the generated feature representations are significantly empowered with the discriminative capability of encoding the position-aware context information, and thus benefit boundary detection and proposal evaluation. We achieve state-of-the-art performance on both two challenging datasets, THUMOS-14 and ActivityNet-1.3, demonstrating the effectiveness and generalization ability of our method.



rate research

Read More

Weakly-supervised temporal action localization aims to localize action instances temporal boundary and identify the corresponding action category with only video-level labels. Traditional methods mainly focus on foreground and background frames separation with only a single attention branch and class activation sequence. However, we argue that apart from the distinctive foreground and background frames there are plenty of semantically ambiguous action context frames. It does not make sense to group those context frames to the same background class since they are semantically related to a specific action category. Consequently, it is challenging to suppress action context frames with only a single class activation sequence. To address this issue, in this paper, we propose an action-context modeling network termed ACM-Net, which integrates a three-branch attention module to measure the likelihood of each temporal point being action instance, context, or non-action background, simultaneously. Then based on the obtained three-branch attention values, we construct three-branch class activation sequences to represent the action instances, contexts, and non-action backgrounds, individually. To evaluate the effectiveness of our ACM-Net, we conduct extensive experiments on two benchmark datasets, THUMOS-14 and ActivityNet-1.3. The experiments show that our method can outperform current state-of-the-art methods, and even achieve comparable performance with fully-supervised methods. Code can be found at https://github.com/ispc-lab/ACM-Net
94 - Ziyi Liu , Le Wang , Qilin Zhang 2021
The object of Weakly-supervised Temporal Action Localization (WS-TAL) is to localize all action instances in an untrimmed video with only video-level supervision. Due to the lack of frame-level annotations during training, current WS-TAL methods rely on attention mechanisms to localize the foreground snippets or frames that contribute to the video-level classification task. This strategy frequently confuse context with the actual action, in the localization result. Separating action and context is a core problem for precise WS-TAL, but it is very challenging and has been largely ignored in the literature. In this paper, we introduce an Action-Context Separation Network (ACSNet) that explicitly takes into account context for accurate action localization. It consists of two branches (i.e., the Foreground-Background branch and the Action-Context branch). The Foreground- Background branch first distinguishes foreground from background within the entire video while the Action-Context branch further separates the foreground as action and context. We associate video snippets with two latent components (i.e., a positive component and a negative component), and their different combinations can effectively characterize foreground, action and context. Furthermore, we introduce extended labels with auxiliary context categories to facilitate the learning of action-context separation. Experiments on THUMOS14 and ActivityNet v1.2/v1.3 datasets demonstrate the ACSNet outperforms existing state-of-the-art WS-TAL methods by a large margin.
Localizing persons and recognizing their actions from videos is a challenging task towards high-level video understanding. Recent advances have been achieved by modeling direct pairwise relations between entities. In this paper, we take one step further, not only model direct relations between pairs but also take into account indirect higher-order relations established upon multiple elements. We propose to explicitly model the Actor-Context-Actor Relation, which is the relation between two actors based on their interactions with the context. To this end, we design an Actor-Context-Actor Relation Network (ACAR-Net) which builds upon a novel High-order Relation Reasoning Operator and an Actor-Context Feature Bank to enable indirect relation reasoning for spatio-temporal action localization. Experiments on AVA and UCF101-24 datasets show the advantages of modeling actor-context-actor relations, and visualization of attention maps further verifies that our model is capable of finding relevant higher-order relations to support action detection. Notably, our method ranks first in the AVA-Kineticsaction localization task of ActivityNet Challenge 2020, out-performing other entries by a significant margin (+6.71mAP). Training code and models will be available at https://github.com/Siyu-C/ACAR-Net.
Temporal action proposal generation aims to estimate temporal intervals of actions in untrimmed videos, which is a challenging yet important task in the video understanding field. The proposals generated by current methods still suffer from inaccurate temporal boundaries and inferior confidence used for retrieval owing to the lack of efficient temporal modeling and effective boundary context utilization. In this paper, we propose Temporal Context Aggregation Network (TCANet) to generate high-quality action proposals through local and global temporal context aggregation and complementary as well as progressive boundary refinement. Specifically, we first design a Local-Global Temporal Encoder (LGTE), which adopts the channel grouping strategy to efficiently encode both local and global temporal inter-dependencies. Furthermore, both the boundary and internal context of proposals are adopted for frame-level and segment-level boundary regressions, respectively. Temporal Boundary Regressor (TBR) is designed to combine these two regression granularities in an end-to-end fashion, which achieves the precise boundaries and reliable confidence of proposals through progressive refinement. Extensive experiments are conducted on three challenging datasets: HACS, ActivityNet-v1.3, and THUMOS-14, where TCANet can generate proposals with high precision and recall. By combining with the existing action classifier, TCANet can obtain remarkable temporal action detection performance compared with other methods. Not surprisingly, the proposed TCANet won the 1$^{st}$ place in the CVPR 2020 - HACS challenge leaderboard on temporal action localization task.
Weakly supervised temporal action localization aims to detect and localize actions in untrimmed videos with only video-level labels during training. However, without frame-level annotations, it is challenging to achieve localization completeness and relieve background interference. In this paper, we present an Action Unit Memory Network (AUMN) for weakly supervised temporal action localization, which can mitigate the above two challenges by learning an action unit memory bank. In the proposed AUMN, two attention modules are designed to update the memory bank adaptively and learn action units specific classifiers. Furthermore, three effective mechanisms (diversity, homogeneity and sparsity) are designed to guide the updating of the memory network. To the best of our knowledge, this is the first work to explicitly model the action units with a memory network. Extensive experimental results on two standard benchmarks (THUMOS14 and ActivityNet) demonstrate that our AUMN performs favorably against state-of-the-art methods. Specifically, the average mAP of IoU thresholds from 0.1 to 0.5 on the THUMOS14 dataset is significantly improved from 47.0% to 52.1%.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا