Do you want to publish a course? Click here

Actor-Context-Actor Relation Network for Spatio-Temporal Action Localization

348   0   0.0 ( 0 )
 Added by Junting Pan
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Localizing persons and recognizing their actions from videos is a challenging task towards high-level video understanding. Recent advances have been achieved by modeling direct pairwise relations between entities. In this paper, we take one step further, not only model direct relations between pairs but also take into account indirect higher-order relations established upon multiple elements. We propose to explicitly model the Actor-Context-Actor Relation, which is the relation between two actors based on their interactions with the context. To this end, we design an Actor-Context-Actor Relation Network (ACAR-Net) which builds upon a novel High-order Relation Reasoning Operator and an Actor-Context Feature Bank to enable indirect relation reasoning for spatio-temporal action localization. Experiments on AVA and UCF101-24 datasets show the advantages of modeling actor-context-actor relations, and visualization of attention maps further verifies that our model is capable of finding relevant higher-order relations to support action detection. Notably, our method ranks first in the AVA-Kineticsaction localization task of ActivityNet Challenge 2020, out-performing other entries by a significant margin (+6.71mAP). Training code and models will be available at https://github.com/Siyu-C/ACAR-Net.



rate research

Read More

This paper presents our solution to the AVA-Kinetics Crossover Challenge of ActivityNet workshop at CVPR 2021. Our solution utilizes multiple types of relation modeling methods for spatio-temporal action detection and adopts a training strategy to integrate multiple relation modeling in end-to-end training over the two large-scale video datasets. Learning with memory bank and finetuning for long-tailed distribution are also investigated to further improve the performance. In this paper, we detail the implementations of our solution and provide experiments results and corresponding discussions. We finally achieve 40.67 mAP on the test set of AVA-Kinetics.
94 - Ziyi Liu , Le Wang , Qilin Zhang 2021
The object of Weakly-supervised Temporal Action Localization (WS-TAL) is to localize all action instances in an untrimmed video with only video-level supervision. Due to the lack of frame-level annotations during training, current WS-TAL methods rely on attention mechanisms to localize the foreground snippets or frames that contribute to the video-level classification task. This strategy frequently confuse context with the actual action, in the localization result. Separating action and context is a core problem for precise WS-TAL, but it is very challenging and has been largely ignored in the literature. In this paper, we introduce an Action-Context Separation Network (ACSNet) that explicitly takes into account context for accurate action localization. It consists of two branches (i.e., the Foreground-Background branch and the Action-Context branch). The Foreground- Background branch first distinguishes foreground from background within the entire video while the Action-Context branch further separates the foreground as action and context. We associate video snippets with two latent components (i.e., a positive component and a negative component), and their different combinations can effectively characterize foreground, action and context. Furthermore, we introduce extended labels with auxiliary context categories to facilitate the learning of action-context separation. Experiments on THUMOS14 and ActivityNet v1.2/v1.3 datasets demonstrate the ACSNet outperforms existing state-of-the-art WS-TAL methods by a large margin.
Current state-of-the-art approaches for spatio-temporal action localization rely on detections at the frame level that are then linked or tracked across time. In this paper, we leverage the temporal continuity of videos instead of operating at the frame level. We propose the ACtion Tubelet detector (ACT-detector) that takes as input a sequence of frames and outputs tubelets, i.e., sequences of bounding boxes with associated scores. The same way state-of-the-art object detectors rely on anchor boxes, our ACT-detector is based on anchor cuboids. We build upon the SSD framework. Convolutional features are extracted for each frame, while scores and regressions are based on the temporal stacking of these features, thus exploiting information from a sequence. Our experimental results show that leveraging sequences of frames significantly improves detection performance over using individual frames. The gain of our tubelet detector can be explained by both more accurate scores and more precise localization. Our ACT-detector outperforms the state-of-the-art methods for frame-mAP and video-mAP on the J-HMDB and UCF-101 datasets, in particular at high overlap thresholds.
Weakly-supervised temporal action localization aims to localize action instances temporal boundary and identify the corresponding action category with only video-level labels. Traditional methods mainly focus on foreground and background frames separation with only a single attention branch and class activation sequence. However, we argue that apart from the distinctive foreground and background frames there are plenty of semantically ambiguous action context frames. It does not make sense to group those context frames to the same background class since they are semantically related to a specific action category. Consequently, it is challenging to suppress action context frames with only a single class activation sequence. To address this issue, in this paper, we propose an action-context modeling network termed ACM-Net, which integrates a three-branch attention module to measure the likelihood of each temporal point being action instance, context, or non-action background, simultaneously. Then based on the obtained three-branch attention values, we construct three-branch class activation sequences to represent the action instances, contexts, and non-action backgrounds, individually. To evaluate the effectiveness of our ACM-Net, we conduct extensive experiments on two benchmark datasets, THUMOS-14 and ActivityNet-1.3. The experiments show that our method can outperform current state-of-the-art methods, and even achieve comparable performance with fully-supervised methods. Code can be found at https://github.com/ispc-lab/ACM-Net
Temporal action localization is an important and challenging task that aims to locate temporal regions in real-world untrimmed videos where actions occur and recognize their classes. It is widely acknowledged that video context is a critical cue for video understanding, and exploiting the context has become an important strategy to boost localization performance. However, previous state-of-the-art methods focus more on exploring semantic context which captures the feature similarity among frames or proposals, and neglect positional context which is vital for temporal localization. In this paper, we propose a temporal-position-sensitive context modeling approach to incorporate both positional and semantic information for more precise action localization. Specifically, we first augment feature representations with directed temporal positional encoding, and then conduct attention-based information propagation, in both frame-level and proposal-level. Consequently, the generated feature representations are significantly empowered with the discriminative capability of encoding the position-aware context information, and thus benefit boundary detection and proposal evaluation. We achieve state-of-the-art performance on both two challenging datasets, THUMOS-14 and ActivityNet-1.3, demonstrating the effectiveness and generalization ability of our method.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا