Do you want to publish a course? Click here

ARVo: Learning All-Range Volumetric Correspondence for Video Deblurring

83   0   0.0 ( 0 )
 Added by Dongxu Li
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Video deblurring models exploit consecutive frames to remove blurs from camera shakes and object motions. In order to utilize neighboring sharp patches, typical methods rely mainly on homography or optical flows to spatially align neighboring blurry frames. However, such explicit approaches are less effective in the presence of fast motions with large pixel displacements. In this work, we propose a novel implicit method to learn spatial correspondence among blurry frames in the feature space. To construct distant pixel correspondences, our model builds a correlation volume pyramid among all the pixel-pairs between neighboring frames. To enhance the features of the reference frame, we design a correlative aggregation module that maximizes the pixel-pair correlations with its neighbors based on the volume pyramid. Finally, we feed the aggregated features into a reconstruction module to obtain the restored frame. We design a generative adversarial paradigm to optimize the model progressively. Our proposed method is evaluated on the widely-adopted DVD dataset, along with a newly collected High-Frame-Rate (1000 fps) Dataset for Video Deblurring (HFR-DVD). Quantitative and qualitative experiments show that our model performs favorably on both datasets against previous state-of-the-art methods, confirming the benefit of modeling all-range spatial correspondence for video deblurring.



rate research

Read More

104 - Junru Wu , Xiang Yu , Ding Liu 2019
Blind video deblurring restores sharp frames from a blurry sequence without any prior. It is a challenging task because the blur due to camera shake, object movement and defocusing is heterogeneous in both temporal and spatial dimensions. Traditional methods train on datasets synthesized with a single level of blur, and thus do not generalize well across levels of blurriness. To address this challenge, we propose a dual attention mechanism to dynamically aggregate temporal cues for deblurring with an end-to-end trainable network structure. Specifically, an internal attention module adaptively selects the optimal temporal scales for restoring the sharp center frame. An external attention module adaptively aggregates and refines multiple sharp frame estimates, from several internal attention modules designed for different blur levels. To train and evaluate on more diverse blur severity levels, we propose a Challenging DVD dataset generated from the raw DVD video set by pooling frames with different temporal windows. Our framework achieves consistently better performance on this more challenging dataset while obtaining strongly competitive results on the original DVD benchmark. Extensive ablative studies and qualitative visualizations further demonstrate the advantage of our method in handling real video blur.
This paper addresses the problem of handling spatial misalignments due to camera-view changes or human-pose variations in person re-identification. We first introduce a boosting-based approach to learn a correspondence structure which indicates the patch-wise matching probabilities between images from a target camera pair. The learned correspondence structure can not only capture the spatial correspondence pattern between cameras but also handle the viewpoint or human-pose variation in individual images. We further introduce a global constraint-based matching process. It integrates a global matching constraint over the learned correspondence structure to exclude cross-view misalignments during the image patch matching process, hence achieving a more reliable matching score between images. Finally, we also extend our approach by introducing a multi-structure scheme, which learns a set of local correspondence structures to capture the spatial correspondence sub-patterns between a camera pair, so as to handle the spatial misalignments between individual images in a more precise way. Experimental results on various datasets demonstrate the effectiveness of our approach.
Previous cycle-consistency correspondence learning methods usually leverage image patches for training. In this paper, we present a fully convolutional method, which is simpler and more coherent to the inference process. While directly applying fully convolutional training results in model collapse, we study the underline reason behind this collapse phenomenon, indicating that the absolute positions of pixels provide a shortcut to easily accomplish cycle-consistence, which hinders the learning of meaningful visual representations. To break this absolute position shortcut, we propose to apply different crops for forward and backward frames, and adopt feature warping to establish correspondence between two crops of a same frame. The former technique enforces the corresponding pixels at forward and back tracks to have different absolute positions, and the latter effectively blocks the shortcuts going between forward and back tracks. In three label propagation benchmarks for pose tracking, face landmark tracking and video object segmentation, our method largely improves the results of vanilla fully convolutional cycle-consistency method, achieving very competitive performance compared with the self-supervised state-of-the-art approaches.
Real-time video deblurring still remains a challenging task due to the complexity of spatially and temporally varying blur itself and the requirement of low computational cost. To improve the network efficiency, we adopt residual dense blocks into RNN cells, so as to efficiently extract the spatial features of the current frame. Furthermore, a global spatio-temporal attention module is proposed to fuse the effective hierarchical features from past and future frames to help better deblur the current frame. Another issue needs to be addressed urgently is the lack of a real-world benchmark dataset. Thus, we contribute a novel dataset (BSD) to the community, by collecting paired blurry/sharp video clips using a co-axis beam splitter acquisition system. Experimental results show that the proposed method (ESTRNN) can achieve better deblurring performance both quantitatively and qualitatively with less computational cost against state-of-the-art video deblurring methods. In addition, cross-validation experiments between datasets illustrate the high generality of BSD over the synthetic datasets. The code and dataset are released at https://github.com/zzh-tech/ESTRNN.
Various blur distortions in video will cause negative impact on both human viewing and video-based applications, which makes motion-robust deblurring methods urgently needed. Most existing works have strong dataset dependency and limited generalization ability in handling challenging scenarios, like blur in low contrast or severe motion areas, and non-uniform blur. Therefore, we propose a PRiOr-enlightened and MOTION-robust video deblurring model (PROMOTION) suitable for challenging blurs. On the one hand, we use 3D group convolution to efficiently encode heterogeneous prior information, explicitly enhancing the scenes perception while mitigating the outputs artifacts. On the other hand, we design the priors representing blur distribution, to better handle non-uniform blur in spatio-temporal domain. Besides the classical camera shake caused global blurry, we also prove the generalization for the downstream task suffering from local blur. Extensive experiments demonstrate we can achieve the state-of-the-art performance on well-known REDS and GoPro datasets, and bring machine task gain.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا