Do you want to publish a course? Click here

Learning Correspondence Structures for Person Re-identification

105   0   0.0 ( 0 )
 Added by Weiyao Lin
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

This paper addresses the problem of handling spatial misalignments due to camera-view changes or human-pose variations in person re-identification. We first introduce a boosting-based approach to learn a correspondence structure which indicates the patch-wise matching probabilities between images from a target camera pair. The learned correspondence structure can not only capture the spatial correspondence pattern between cameras but also handle the viewpoint or human-pose variation in individual images. We further introduce a global constraint-based matching process. It integrates a global matching constraint over the learned correspondence structure to exclude cross-view misalignments during the image patch matching process, hence achieving a more reliable matching score between images. Finally, we also extend our approach by introducing a multi-structure scheme, which learns a set of local correspondence structures to capture the spatial correspondence sub-patterns between a camera pair, so as to handle the spatial misalignments between individual images in a more precise way. Experimental results on various datasets demonstrate the effectiveness of our approach.



rate research

Read More

Person re-identification (re-id) suffers from a serious occlusion problem when applied to crowded public places. In this paper, we propose to retrieve a full-body person image by using a person image with occlusions. This differs significantly from the conventional person re-id problem where it is assumed that person images are detected without any occlusion. We thus call this new problem the occluded person re-identitification. To address this new problem, we propose a novel Attention Framework of Person Body (AFPB) based on deep learning, consisting of 1) an Occlusion Simulator (OS) which automatically generates artificial occlusions for full-body person images, and 2) multi-task losses that force the neural network not only to discriminate a persons identity but also to determine whether a sample is from the occluded data distribution or the full-body data distribution. Experiments on a new occluded person re-id dataset and three existing benchmarks modified to include full-body person images and occluded person images show the superiority of the proposed method.
Person Re-identification (re-id) faces two major challenges: the lack of cross-view paired training data and learning discriminative identity-sensitive and view-invariant features in the presence of large pose variations. In this work, we address both problems by proposing a novel deep person image generation model for synthesizing realistic person images conditional on the pose. The model is based on a generative adversarial network (GAN) designed specifically for pose normalization in re-id, thus termed pose-normalization GAN (PN-GAN). With the synthesized images, we can learn a new type of deep re-id feature free of the influence of pose variations. We show that this feature is strong on its own and complementary to features learned with the original images. Importantly, under the transfer learning setting, we show that our model generalizes well to any new re-id dataset without the need for collecting any training data for model fine-tuning. The model thus has the potential to make re-id model truly scalable.
261 - Qi Wang , Sikai Bai , Junyu Gao 2021
Person re-identification (re-ID) has gained more and more attention due to its widespread applications in intelligent video surveillance. Unfortunately, the mainstream deep learning methods still need a large quantity of labeled data to train models, and annotating data is an expensive work in real-world scenarios. In addition, due to domain gaps between different datasets, the performance is dramatically decreased when re-ID models pre-trained on label-rich datasets (source domain) are directly applied to other unlabeled datasets (target domain). In this paper, we attempt to remedy these problems from two aspects, namely data and methodology. Firstly, we develop a data collector to automatically generate synthetic re-ID samples in a computer game, and construct a data labeler to simultaneously annotate them, which free humans from heavy data collections and annotations. Based on them, we build two synthetic person re-ID datasets with different scales, GSPR and mini-GSPR datasets. Secondly, we propose a synthesis-based multi-domain collaborative refinement (SMCR) network, which contains a synthetic pretraining module and two collaborative-refinement modules to implement sufficient learning for the valuable knowledge from multiple domains. Extensive experiments show that our proposed framework obtains significant performance improvements over the state-of-the-art methods on multiple unsupervised domain adaptation tasks of person re-ID.
Recently, with the advance of deep Convolutional Neural Networks (CNNs), person Re-Identification (Re-ID) has witnessed great success in various applications. However, with limited receptive fields of CNNs, it is still challenging to extract discriminative representations in a global view for persons under non-overlapped cameras. Meanwhile, Transformers demonstrate strong abilities of modeling long-range dependencies for spatial and sequential data. In this work, we take advantages of both CNNs and Transformers, and propose a novel learning framework named Hierarchical Aggregation Transformer (HAT) for image-based person Re-ID with high performance. To achieve this goal, we first propose a Deeply Supervised Aggregation (DSA) to recurrently aggregate hierarchical features from CNN backbones. With multi-granularity supervisions, the DSA can enhance multi-scale features for person retrieval, which is very different from previous methods. Then, we introduce a Transformer-based Feature Calibration (TFC) to integrate low-level detail information as the global prior for high-level semantic information. The proposed TFC is inserted to each level of hierarchical features, resulting in great performance improvements. To our best knowledge, this work is the first to take advantages of both CNNs and Transformers for image-based person Re-ID. Comprehensive experiments on four large-scale Re-ID benchmarks demonstrate that our method shows better results than several state-of-the-art methods. The code is released at https://github.com/AI-Zhpp/HAT.
Video-based person re-identification (Re-ID) aims to automatically retrieve video sequences of the same person under non-overlapping cameras. To achieve this goal, it is the key to fully utilize abundant spatial and temporal cues in videos. Existing methods usually focus on the most conspicuous image regions, thus they may easily miss out fine-grained clues due to the person varieties in image sequences. To address above issues, in this paper, we propose a novel Global-guided Reciprocal Learning (GRL) framework for video-based person Re-ID. Specifically, we first propose a Global-guided Correlation Estimation (GCE) to generate feature correlation maps of local features and global features, which help to localize the high- and low-correlation regions for identifying the same person. After that, the discriminative features are disentangled into high-correlation features and low-correlation features under the guidance of the global representations. Moreover, a novel Temporal Reciprocal Learning (TRL) mechanism is designed to sequentially enhance the high-correlation semantic information and accumulate the low-correlation sub-critical clues. Extensive experiments are conducted on three public benchmarks. The experimental results indicate that our approach can achieve better performance than other state-of-the-art approaches. The code is released at https://github.com/flysnowtiger/GRL.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا