No Arabic abstract
Magnetocaloric effect (MCE), magnetization, specific heat, and magnetostriction measurements were performed in both pulsed and steady high magnetic fields to investigate the magnetocaloric properties of Heusler alloys Ni50-xCoxMn31.5Ga18.5 (x = 9 and 9.7). From direct MCE measurements for Ni41Co9Mn31.5Ga18.5 up to 56 T, a steep temperature drop was observed for magnetic-field-induced martensitic transformation (MFIMT), designated as inverse MCE. Remarkably, this inverse MCE is apparent not only with MFIMT, but also in the magnetic-field-induced austenite phase. Specific heat measurements under steady high magnetic fields revealed that the magnetic field variation of the electronic entropy plays a dominant role in the unconventional magnetocaloric properties of these materials. First-principles based calculations performed for Ni41Co9Mn31.5Ga18.5 and Ni45Co5Mn36.7In13.3 revealed that the magnetic-field-induced austenite phase of Ni41Co9Mn31.5Ga18.5 is more unstable than that of Ni45Co5Mn36.7In13.3 and that it is sensitive to slight tetragonal distortion. We conclude that the inverse MCE in the magnetic-field-induced austenite phase is realized by marked change in the electronic entropy through tetragonal distortion induced by the externally applied magnetic field.
Magnetic phase diagrams of the metamagnetic shape memory alloys Ni50-xCoxMn31.5Ga18.5 (x = 9 and 9.7) were produced from high-field magnetization measurements up to 56 T. For both compounds, magnetic field induced martensitic transformations are observed at various temperatures below 300 K. Hysteresis of the field-induced transformation shows unconventional temperature dependence: it decreases with decreasing temperature after showing a peak. Magnetic susceptibility measurement, microscopy, and X-ray diffraction data suggest a model incorporating the magnetic anisotropy and Zeeman energy in two variants, which qualitatively explains the thermal and the magnetic field history dependence of the hysteresis in these alloys.
Polycrystalline Heusler compounds Ni2Mn0.75Cu0.25Ga0.84Al0.16 with a martensitic transition between ferromagnetic phases and Ni2Mn0.70Cu0.30Ga0.84Al0.16 with a magnetostructural transformation were investigated by magnetization and thermal measurements, both as a function of temperature and magnetic field. The compound Ni2Mn0.75Cu0.25Ga0.84Al0.16 presents a large magnetocaloric effect among magnetically aligned structures and its causes are explored. In addition, Ni2Mn0.70Cu0.30Ga0.84Al0.16 shows very high, although irreversible, entropy and adiabatic temperature change at room temperature under a magnetic field change 0-1 T. Improved refrigerant capacity is also a highlight of the 30% Cu material when compared to similar Ni2MnGa-based alloys.
We propose the phase diagram of a new pseudo-ternary compound, CoMnGe_{1-x}Sn_{x}, in the range x less than or equal to 0.1. Our phase diagram is a result of magnetic and calometric measurements. We demonstrate the appearance of a hysteretic magnetostructural phase transition in the range x=0.04 to x=0.055, similar to that observed in CoMnGe under hydrostatic pressure. From magnetisation measurements, we show that the isothermal entropy change associated with the magnetostructural transition can be as high as 4.5 J/(K kg) in a field of 1 Tesla. However, the large thermal hysteresis in this transition (~20 K) will limit its straightforward use in a magnetocaloric device.
Ni$_{50}$Mn$_{34}$In$_{16}$ undergoes a martensitic transformation around 250 K and exhibits a field induced reverse martensitic transformation and substantial magnetocaloric effects. We substitute small amounts Ga for In, which are isoelectronic, to carry these technically important properties to close to room temperature by shifting the martensitic transformation temperature.
The magnetocaloric effect (MCE) in paramagnetic materials has been widely used for attaining very low temperatures by applying a magnetic field isothermally and removing it adiabatically. The effect can be exploited also for room temperature refrigeration by using recently discovered giant MCE materials. In this letter, we report on an inverse situation in Ni-Mn-Sn alloys, whereby applying a magnetic field adiabatically, rather than removing it, causes the sample to cool. This has been known to occur in some intermetallic compounds, for which a moderate entropy increase can be induced when a field is applied, thus giving rise to an inverse magnetocaloric effect. However, the entropy change found for some ferromagnetic Ni-Mn-Sn alloys is just as large as that reported for giant MCE materials, but with opposite sign. The giant inverse MCE has its origin in a martensitic phase transformation that modifies the magnetic exchange interactions due to the change in the lattice parameters.