Do you want to publish a course? Click here

Canted antiferromagnetic order and spin dynamics in the honeycomb-lattice Tb2Ir3Ga9

163   0   0.0 ( 0 )
 Added by Feng Ye
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Single crystal neutron diffraction, inelastic neutron scattering, bulk magnetization measurements, and first-principles calculations are used to investigate the magnetic properties of the honeycomb lattice $rm Tb_2Ir_3Ga_9$. While the $Rln2$ magnetic contribution to the low-temperature entropy indicates a $rm J_{eff}=1/2$ moment for the lowest-energy crystal-field doublet, the Tb$^{3+}$ ions form a canted antiferromagnetic structure below 12.5 K. Due to the Dzyalloshinskii-Moriya interactions, the Tb moments in the $ab$ plane are slightly canted towards $b$ by $6^circ$ with a canted moment of 1.22 $mu_{rm B} $ per formula unit. A minimal $xxz$ spin Hamiltonian is used to simultaneously fit the spin-wave frequencies along the high symmetry directions and the field dependence of the magnetization along the three crystallographic axes. Long-range magnetic interactions for both in-plane and out-of-plane couplings up to the second nearest neighbors are needed to account for the observed static and dynamic properties. The $z$ component of the exchange interactions between Tb moments are larger than the $x$ and $y$ components. This compound also exhibits bond-dependent exchange with negligible nearest exchange coupling between moments parallel and perpendicular to the 4$f$ orbitals. Despite the $J_{{rm eff}}=1/2$ moments, the spin Hamiltonian is denominated by a large in-plane anisotropy $K_z sim -1$ meV. DFT calculations confirm the antiferromagnetic ground state and the substantial inter-plane coupling at larger Tb-Tb distances.

rate research

Read More

Theoretical studies have predicted the existence of topological magnons in honeycomb compounds with zig-zag antiferromagnetic (AFM) order. Here we report the discovery of zig-zag AFM order in the layered and non-centrosymmetric honeycomb nickelate Ni$_2$Mo$_3$O$_8$ through a combination of magnetization, specific heat, x-ray and neutron diffraction and electron paramagnetic resonance measurements. It is the first example of such order in an integer-spin non-centrosymmetric structure ($P$$_6$3$mc$). Further, each of the two distinct sites of the bipartite honeycomb lattice has a unique crystal field environment, octahedral and tetrahedral Ni$^{2+}$ respectively, enabling independent substitution on each sublattice. Replacement of Ni by Mg on the octahedral site suppresses the long range magnetic order and results in a weakly ferromagnetic state. Conversely, substitution of Fe for Ni enhances the AFM ordering temperature. Thus Ni$_2$Mo$_3$O$_8$ provides a platform on which to explore the rich physics of $S = 1$ on the honeycomb in the presence of competing magnetic interactions with a non-centrosymmetric, formally piezeo-polar, crystal structure.
Motivated by the recently synthesized insulating nickelate Ni$_2$Mo$_3$O$_8$, which has been reported to have an unusual non-collinear magnetic order of Ni$^{2+}$ $S=1$ moments with a nontrivial angle between adjacent spins, we construct an effective spin-1 model on the honeycomb lattice, with the exchange parameters determined with the help of first principles electronic structure calculations. The resulting bilinear-biquadratic model, supplemented with the realistic crystal-field induced anisotropy, favors the collinear Neel state. We find that the crucial key to explaining the observed noncollinear spin structure is the inclusion of the Dzyaloshinskii--Moriya (DM) interaction between the neighboring spins. By performing the variational mean-field and linear spin-wave theory (LSWT) calculations, we determine that a realistic value of the DM interaction $Dapprox 2.78$ meV is sufficient to quantitatively explain the observed angle between the neighboring spins. We furthermore compute the spectrum of magnetic excitations within the LSWT and random-phase approximation (RPA) which should be compared to future inelastic neutron measurements.
Antiferromagnetic insulators on the diamond lattice are candidate materials to host exotic magnetic phenomena ranging from spin-orbital entanglement to degenerate spiral ground-states and topological paramagnetism. Compared to other three-dimensional networks of magnetic ions, such as the geometrically frustrated pyrochlore lattice, the investigation of diamond-lattice magnetism in real materials is less mature. In this work, we characterize the magnetic properties of model A-site spinels CoRh2O4 (cobalt rhodite) and CuRh2O4 (copper rhodite) by means of thermo-magnetic and neutron scattering measurements and perform group theory analysis, Rietveld refinement, mean-field theory, and spin wave theory calculations to analyze the experimental results. Our investigation reveals that cubic CoRh2O4 is a canonical S=3/2 diamond-lattice Heisenberg antiferromagnet with a nearest neighbor exchange J = 0.63 meV and a Neel ordered ground-state below a temperature of 25 K. In tetragonally distorted CuRh2O4, competiting exchange interactions between up to third nearest-neighbor spins lead to the development of an incommensurate spin helix at 24 K with a magnetic propagation vector k = (0,0,0.79). Strong reduction of the ordered moment is observed for the S=1/2 spins in CuRh2O4 and captured by our 1/S corrections to the staggered magnetization. Our work identifies CoRh2O4 and CuRh2O4 as reference materials to guide future work searching for exotic quantum behavior in diamond-lattice antiferromagnets.
We report $^{51}$V NMR, $mu$SR and zero applied field $^{63,65}$Cu NMR measurements on powder samples of Sr-vesignieite, SrCu$_3$V$_2$O$_8$(OH)$_2$, a $S = 1/2$ nearly-kagome Heisenberg antiferromagnet. Our results demonstrate that the ground state is a $mathbf{q} = 0$ magnetic structure with spins canting either in or out of the kagome plane, giving rise to weak ferromagnetism. We determine the size of ordered moments and the angle of canting for different possible $mathbf{q} = 0$ structures and orbital scenarios, thereby providing insight into the role of the Dzyaloshinskii-Moriya (DM) interaction in this material.
Using THz spectroscopy, we show that the spin-wave spectrum of multiferroic BiFeO$_3$ in its high-field canted antiferromagnetic state is well described by a spin model that violates rhombohedral symmetry. We demonstrate that the monoclinic distortion of the canted antiferromagnetic state is induced by the single-ion magnetoelastic coupling between the lattice and the two nearly anti-parallel spins. The revised spin model for BiFeO$_3$ contains two new single-ion anisotropy terms that violate rhombohedral symmetry and depend on the direction of the magnetic field.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا