Do you want to publish a course? Click here

Emergent statistical mechanics from properties of disordered random matrix product states

54   0   0.0 ( 0 )
 Added by Jens Eisert
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The study of generic properties of quantum states has led to an abundance of insightful results. A meaningful set of states that can be efficiently prepared in experiments are ground states of gapped local Hamiltonians, which are well approximated by matrix product states. In this work, we introduce a picture of generic states within the trivial phase of matter with respect to their non-equilibrium and entropic properties: We do so by rigorously exploring non-translation-invariant matrix product states drawn from a local i.i.d. Haar-measure. We arrive at these results by exploiting techniques for computing moments of random unitary matrices and by exploiting a mapping to partition functions of classical statistical models, a method that has lead to valuable insights on local random quantum circuits. Specifically, we prove that such disordered random matrix product states equilibrate exponentially well with overwhelming probability under the time evolution of Hamiltonians featuring a non-degenerate spectrum. Moreover, we prove two results about the entanglement Renyi entropy: The entropy with respect to sufficiently disconnected subsystems is generically extensive in the system-size, and for small connected systems the entropy is almost maximal for sufficiently large bond dimensions.



rate research

Read More

Just as matrix product states represent ground states of one-dimensional quantum spin systems faithfully, continuous matrix product states (cMPS) provide faithful representations of the vacuum of interacting field theories in one spatial dimension. Unlike the quantum spin case however, for which the density matrix renormalization group and related matrix product state algorithms provide robust algorithms for optimizing the variational states, the optimization of cMPS for systems with inhomogeneous external potentials has been problematic. We resolve this problem by constructing a piecewise linear parameterization of the underlying matrix-valued functions, which enables the calculation of the exact reduced density matrices everywhere in the system by high-order Taylor expansions. This turns the variational cMPS problem into a variational algorithm from which both the energy and its backwards derivative can be calculated exactly and at a cost that scales as the cube of the bond dimension. We illustrate this by finding ground states of interacting bosons in external potentials, and by calculating boundary or Casimir energy corrections of continuous many-body systems with open boundary conditions.
We study thermal states of strongly interacting quantum spin chains and prove that those can be represented in terms of convex combinations of matrix product states. Apart from revealing new features of the entanglement structure of Gibbs states our results provide a theoretical justification for the use of Whites algorithm of minimally entangled typical thermal states. Furthermore, we shed new light on time dependent matrix product state algorithms which yield hydrodynamical descriptions of the underlying dynamics.
We demonstrate that the optimal states in lossy quantum interferometry may be efficiently simulated using low rank matrix product states. We argue that this should be expected in all realistic quantum metrological protocols with uncorrelated noise and is related to the elusive nature of the Heisenberg precision scaling in presence of decoherence.
In stochastic modeling, there has been a significant effort towards finding predictive models that predict a stochastic process future using minimal information from its past. Meanwhile, in condensed matter physics, matrix product states (MPS) are known as a particularly efficient representation of 1D spin chains. In this Letter, we associate each stochastic process with a suitable quantum state of a spin chain. We then show that the optimal predictive model for the process leads directly to an MPS representation of the associated quantum state. Conversely, MPS methods offer a systematic construction of the best known quantum predictive models. This connection allows an improved method for computing the quantum memory needed for generating optimal predictions. We prove that this memory coincides with the entanglement of the associated spin chain across the past-future bipartition.
We combine the Density Matrix Renormalization Group (DMRG) with Matrix Product State tangent space concepts to construct a variational algorithm for finding ground states of one dimensional quantum lattices in the thermodynamic limit. A careful comparison of this variational uniform Matrix Product State algorithm (VUMPS) with infinite Density Matrix Renormalization Group (IDMRG) and with infinite Time Evolving Block Decimation (ITEBD) reveals substantial gains in convergence speed and precision. We also demonstrate that VUMPS works very efficiently for Hamiltonians with long range interactions and also for the simulation of two dimensional models on infinite cylinders. The new algorithm can be conveniently implemented as an extension of an already existing DMRG implementation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا