We demonstrate that the optimal states in lossy quantum interferometry may be efficiently simulated using low rank matrix product states. We argue that this should be expected in all realistic quantum metrological protocols with uncorrelated noise and is related to the elusive nature of the Heisenberg precision scaling in presence of decoherence.
In stochastic modeling, there has been a significant effort towards finding predictive models that predict a stochastic process future using minimal information from its past. Meanwhile, in condensed matter physics, matrix product states (MPS) are known as a particularly efficient representation of 1D spin chains. In this Letter, we associate each stochastic process with a suitable quantum state of a spin chain. We then show that the optimal predictive model for the process leads directly to an MPS representation of the associated quantum state. Conversely, MPS methods offer a systematic construction of the best known quantum predictive models. This connection allows an improved method for computing the quantum memory needed for generating optimal predictions. We prove that this memory coincides with the entanglement of the associated spin chain across the past-future bipartition.
Any quantum process is represented by a sequence of quantum channels. We consider ergodic processes, obtained by sampling channel valued random variables along the trajectories of an ergodic dynamical system. Examples of such processes include the effect of repeated application of a fixed quantum channel perturbed by arbitrary correlated noise, or a sequence of channels drawn independently and identically from an ensemble. Under natural irreducibility conditions, we obtain a theorem showing that the state of a system evolving by such a process converges exponentially fast to an ergodic sequence of states depending on the process, but independent of the initial state of the system. As an application, we describe the thermodynamic limit of ergodic matrix product states and prove that the 2-point correlations of local observables in such states decay exponentially with their distance in the bulk. Further applications and physical implications of our results are discussed in the companion paper [11].
We combine the Density Matrix Renormalization Group (DMRG) with Matrix Product State tangent space concepts to construct a variational algorithm for finding ground states of one dimensional quantum lattices in the thermodynamic limit. A careful comparison of this variational uniform Matrix Product State algorithm (VUMPS) with infinite Density Matrix Renormalization Group (IDMRG) and with infinite Time Evolving Block Decimation (ITEBD) reveals substantial gains in convergence speed and precision. We also demonstrate that VUMPS works very efficiently for Hamiltonians with long range interactions and also for the simulation of two dimensional models on infinite cylinders. The new algorithm can be conveniently implemented as an extension of an already existing DMRG implementation.
We define matrix product states in the continuum limit, without any reference to an underlying lattice parameter. This allows to extend the density matrix renormalization group and variational matrix product state formalism to quantum field theories and continuum models in 1 spatial dimension. We illustrate our procedure with the Lieb-Liniger model.
We study how useful random states are for quantum metrology, i.e., surpass the classical limits imposed on precision in the canonical phase estimation scenario. First, we prove that random pure states drawn from the Hilbert space of distinguishable particles typically do not lead to super-classical scaling of precision even when allowing for local unitary optimization. Conversely, we show that random states from the symmetric subspace typically achieve the optimal Heisenberg scaling without the need for local unitary optimization. Surprisingly, the Heisenberg scaling is observed for states of arbitrarily low purity and preserved under finite particle losses. Moreover, we prove that for such states a standard photon-counting interferometric measurement suffices to typically achieve the Heisenberg scaling of precision for all possible values of the phase at the same time. Finally, we demonstrate that metrologically useful states can be prepared with short random optical circuits generated from three types of beam-splitters and a non-linear (Kerr-like) transformation.