Do you want to publish a course? Click here

Dynamic and Thermodynamic Models of Adaptation

58   0   0.0 ( 0 )
 Added by Alexander Gorban
 Publication date 2021
  fields Biology
and research's language is English




Ask ChatGPT about the research

The concept of biological adaptation was closely connected to some mathematical, engineering and physical ideas from the very beginning. Cannon in his The wisdom of the body (1932) used the engineering vision of regulation. In 1938, Selye enriched this approach by the notion of adaptation energy. This term causes much debate when one takes it literally, i.e. as a sort of energy. Selye did not use the language of mathematics, but the formalization of his phenomenological theory in the spirit of thermodynamics was simple and led to verifiable predictions. In 1980s, the dynamics of correlation and variance in systems under adaptation to a load of environmental factors were studied and the universal effect in ensembles of systems under a load of similar factors was discovered: in a crisis, as a rule, even before the onset of obvious symptoms of stress, the correlation increases together with variance (and volatility). During 30 years, this effect has been supported by many observations of groups of humans, mice, trees, grassy plants, and on financial time series. In the last ten years, these results were supplemented by many new experiments, from gene networks in cardiology and oncology to dynamics of depression and clinical psychotherapy. Several systems of models were developed: the thermodynamic-like theory of adaptation of ensembles and several families of models of individual adaptation. Historically, the first group of models was based on Selyes concept of adaptation energy and used fitness estimates. Two other groups of models are based on the idea of hidden attractor bifurcation and on the advection--diffusion model for distribution of population in the space of physiological attributes. We explore this world of models and experiments, starting with classic works, with particular attention to the results of the last ten years and open questions.



rate research

Read More

100 - Herbert M. Sauro 2021
Recent studies have shown that the majority of published computational models in systems biology and physiology are not repeatable or reproducible. There are a variety of reasons for this. One of the most likely reasons is that given how busy modern researchers are and the fact that no credit is given to authors for publishing repeatable work, it is inevitable that this will be the case. The situation can only be rectified when government agencies, universities and other research institutions change policies and that journals begin to insist that published work is in fact at least repeatable if not reproducible. In this chapter guidelines are described that can be used by researchers to help make sure their work is repeatable. A scoring system is suggested that authors can use to determine how well they are doing.
Additive, multiplicative, and odd ratio neutral models for interactions are for long advocated and controversial in epidemiology. We show here that these commonly advocated models are biased, leading to spurious interactions, and missing true interactions.
The amount of mutual information contained in time series of two elements gives a measure of how well their activities are coordinated. In a large, complex network of interacting elements, such as a genetic regulatory network within a cell, the average of the mutual information over all pairs <I> is a global measure of how well the system can coordinate its internal dynamics. We study this average pairwise mutual information in random Boolean networks (RBNs) as a function of the distribution of Boolean rules implemented at each element, assuming that the links in the network are randomly placed. Efficient numerical methods for calculating <I> show that as the number of network nodes N approaches infinity, the quantity N<I> exhibits a discontinuity at parameter values corresponding to critical RBNs. For finite systems it peaks near the critical value, but slightly in the disordered regime for typical parameter variations. The source of high values of N<I> is the indirect correlations between pairs of elements from different long chains with a common starting point. The contribution from pairs that are directly linked approaches zero for critical networks and peaks deep in the disordered regime.
Nonlinear space-time dynamics, defined in terms of celebrated solitonic equations, brings indispensable tools for understanding, prediction and control of complex behaviors in both physical and life sciences. In this paper, we review sine-Gordon solitons, kinks and breathers as models of nonlinear excitations in complex systems in physics and in living cellular structures, both intra-cellular (DNA, protein folding and microtubules) and inter-cellular (neural impulses and muscular contractions). Key words: Sine-Gordon solitons, kinks and breathers, DNA, Protein folding, Microtubules, Neural conduction, Muscular contraction
104 - Y. Ye , R. D. Boyce , M.K. Davis 2019
The Sustainability and Industry Partnership Work Group (SIP-WG) is a part of the National Cancer Institute Informatics Technology for Cancer Research (ITCR) program. The charter of the SIP-WG is to investigate options of long-term sustainability of open source software (OSS) developed by the ITCR, in part by developing a collection of business model archetypes that can serve as sustainability plans for ITCR OSS development initiatives. The workgroup assembled models from the ITCR program, from other studies, and via engagement of its extensive network of relationships with other organizations (e.g., Chan Zuckerberg Initiative, Open Source Initiative and Software Sustainability Institute). This article reviews existing sustainability models and describes ten OSS use cases disseminated by the SIP-WG and others, and highlights five essential attributes (alignment with unmet scientific needs, dedicated development team, vibrant user community, feasible licensing model, and sustainable financial model) to assist academic software developers in achieving best practice in software sustainability.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا