No Arabic abstract
We study the problem of fairly allocating a set of indivisible goods among $n$ agents with additive valuations. Envy-freeness up to any good (EFX) is arguably the most compelling fairness notion in this context. However, the existence of EFX allocations has not been settled and is one of the most important problems in fair division. Towards resolving this problem, many impressive results show the existence of its relaxations, e.g., the existence of $0.618$-EFX allocations, and the existence of EFX at most $n-1$ unallocated goods. The latter result was recently improved for three agents, in which the two unallocated goods are allocated through an involved procedure. Reducing the number of unallocated goods for arbitrary number of agents is a systematic way to settle the big question. In this paper, we develop a new approach, and show that for every $varepsilon in (0,1/2]$, there always exists a $(1-varepsilon)$-EFX allocation with sublinear number of unallocated goods and high Nash welfare. For this, we reduce the EFX problem to a novel problem in extremal graph theory. We introduce the notion of rainbow cycle number $R(cdot)$. For all $d in mathbb{N}$, $R(d)$ is the largest $k$ such that there exists a $k$-partite digraph $G =(cup_{i in [k]} V_i, E)$, in which 1) each part has at most $d$ vertices, i.e., $lvert V_i rvert leq d$ for all $i in [k]$, 2) for any two parts $V_i$ and $V_j$, each vertex in $V_i$ has an incoming edge from some vertex in $V_j$ and vice-versa, and 3) there exists no cycle in $G$ that contains at most one vertex from each part. We show that any upper bound on $R(d)$ directly translates to a sublinear bound on the number of unallocated goods. We establish a polynomial upper bound on $R(d)$, yielding our main result. Furthermore, our approach is constructive, which also gives a polynomial-time algorithm for finding such an allocation.
We study equilibria of markets with $m$ heterogeneous indivisible goods and $n$ consumers with combinatorial preferences. It is well known that a competitive equilibrium is not guaranteed to exist when valuations are not gross substitutes. Given the widespread use of bundling in real-life markets, we study its role as a stabilizing and coordinating device by considering the notion of emph{competitive bundling equilibrium}: a competitive equilibrium over the market induced by partitioning the goods for sale into fixed bundles. Compared to other equilibrium concepts involving bundles, this notion has the advantage of simulatneous succinctness ($O(m)$ prices) and market clearance. Our first set of results concern welfare guarantees. We show that in markets where consumers care only about the number of goods they receive (known as multi-unit or homogeneous markets), even in the presence of complementarities, there always exists a competitive bundling equilibrium that guarantees a logarithmic fraction of the optimal welfare, and this guarantee is tight. We also establish non-trivial welfare guarantees for general markets, two-consumer markets, and markets where the consumer valuations are additive up to a fixed budget (budget-additive). Our second set of results concern revenue guarantees. Motivated by the fact that the revenue extracted in a standard competitive equilibrium may be zero (even with simple unit-demand consumers), we show that for natural subclasses of gross substitutes valuations, there always exists a competitive bundling equilibrium that extracts a logarithmic fraction of the optimal welfare, and this guarantee is tight. The notion of competitive bundling equilibrium can thus be useful even in markets which possess a standard competitive equilibrium.
We study the problem of distributing a set of indivisible items among agents with additive valuations in a $mathit{fair}$ manner. The fairness notion under consideration is Envy-freeness up to any item (EFX). Despite significant efforts by many researchers for several years, the existence of EFX allocations has not been settled beyond the simple case of two agents. In this paper, we show constructively that an EFX allocation always exists for three agents. Furthermore, we falsify the conjecture by Caragiannis et al. by showing an instance with three agents for which there is a partial EFX allocation (some items are not allocated) with higher Nash welfare than that of any complete EFX allocation.
In this paper we study how to fairly allocate a set of m indivisible chores to a group of n agents, each of which has a general additive cost function on the items. Since envy-free (EF) allocation is not guaranteed to exist, we consider the notion of envy-freeness up to any item (EFX). In contrast to the fruitful results regarding the (approximation of) EFX allocations for goods, very little is known for the allocation of chores. Prior to our work, for the allocation of chores, it is known that EFX allocations always exist for two agents, or general number of agents with IDO cost functions. For general instances, no non-trivial approximation result regarding EFX allocation is known. In this paper we make some progress in this direction by showing that for three agents we can always compute a 5-approximation of EFX allocation in polynomial time. For n>=4 agents, our algorithm always computes an allocation that achieves an approximation ratio of O(n^2) regarding EFX.
Computational and economic results suggest that social welfare maximization and combinatorial auction design are much easier when bidders valuations satisfy the gross substitutes condition. The goal of this paper is to evaluate rigorously the folklore belief that the main take-aways from these results remain valid in settings where the gross substitutes condition holds only approximately. We show that for valuations that pointwise approximate a gross substitutes valuation (in fact even a linear valuation), optimal social welfare cannot be approximated to within a subpolynomial factor and demand oracles cannot be simulated using a subexponential number of value queries. We then provide several positive results by imposing additional structure on the valuations (beyond gross substitutes), using a more stringent notion of approximation, and/or using more powerful oracle access to the valuations. For example, we prove that the performance of the greedy algorithm degrades gracefully for near-linear valuations with approximately decreasing marginal values, that with demand queries, approximate welfare guarantees for XOS valuations degrade gracefully for valuations that are pointwise close to XOS, and that the performance of the Kelso-Crawford auction degrades gracefully for valuations that are close to various subclasses of gross substitutes valuations.
We model and study the problem of assigning traffic in an urban road network infrastructure. In our model, each driver submits their intended destination and is assigned a route to follow that minimizes the social cost (i.e., travel distance of all the drivers). We assume drivers are strategic and try to manipulate the system (i.e., misreport their intended destination and/or deviate from the assigned route) if they can reduce their travel distance by doing so. Such strategic behavior is highly undesirable as it can lead to an overall suboptimal traffic assignment and cause congestion. To alleviate this problem, we develop moneyless mechanisms that are resilient to manipulation by the agents and offer provable approximation guarantees on the social cost obtained by the solution. We then empirically test the mechanisms studied in the paper, showing that they can be effectively used in practice in order to compute manipulation resistant traffic allocations.