No Arabic abstract
Quantizing deep networks with adaptive bit-widths is a promising technique for efficient inference across many devices and resource constraints. In contrast to static methods that repeat the quantization process and train different models for different constraints, adaptive quantization enables us to flexibly adjust the bit-widths of a single deep network during inference for instant adaptation in different scenarios. While existing research shows encouraging results on common image classification benchmarks, this paper investigates how to train such adaptive networks more effectively. Specifically, we present two novel techniques for quantizing deep neural networks with adaptive bit-widths of weights and activations. First, we propose a collaborative strategy to choose a high-precision teacher for transferring knowledge to the low-precision student while jointly optimizing the model with all bit-widths. Second, to effectively transfer knowledge, we develop a dynamic block swapping method by randomly replacing the blocks in the lower-precision student network with the corresponding blocks in the higher-precision teacher network. Extensive experiments on multiple image classification datasets including video classification benchmarks for the first time, well demonstrate the efficacy of our approach over state-of-the-art methods.
We propose a method for lossy image compression based on recurrent, convolutional neural networks that outperforms BPG (4:2:0 ), WebP, JPEG2000, and JPEG as measured by MS-SSIM. We introduce three improvements over previous research that lead to this state-of-the-art result. First, we show that training with a pixel-wise loss weighted by SSIM increases reconstruction quality according to several metrics. Second, we modify the recurrent architecture to improve spatial diffusion, which allows the network to more effectively capture and propagate image information through the networks hidden state. Finally, in addition to lossless entropy coding, we use a spatially adaptive bit allocation algorithm to more efficiently use the limited number of bits to encode visually complex image regions. We evaluate our method on the Kodak and Tecnick image sets and compare against standard codecs as well recently published methods based on deep neural networks.
We investigate the compression of deep neural networks by quantizing their weights and activations into multiple binary bases, known as multi-bit networks (MBNs), which accelerate the inference and reduce the storage for the deployment on low-resource mobile and embedded platforms. We propose Adaptive Loss-aware Quantization (ALQ), a new MBN quantization pipeline that is able to achieve an average bitwidth below one-bit without notable loss in inference accuracy. Unlike previous MBN quantization solutions that train a quantizer by minimizing the error to reconstruct full precision weights, ALQ directly minimizes the quantization-induced error on the loss function involving neither gradient approximation nor full precision maintenance. ALQ also exploits strategies including adaptive bitwidth, smooth bitwidth reduction, and iterative trained quantization to allow a smaller network size without loss in accuracy. Experiment results on popular image datasets show that ALQ outperforms state-of-the-art compressed networks in terms of both storage and accuracy. Code is available at https://github.com/zqu1992/ALQ
Low-bit deep neural networks (DNNs) become critical for embedded applications due to their low storage requirement and computing efficiency. However, they suffer much from the non-negligible accuracy drop. This paper proposes the stochastic quantization (SQ) algorithm for learning accurate low-bit DNNs. The motivation is due to the following observation. Existing training algorithms approximate the real-valued elements/filters with low-bit representation all together in each iteration. The quantization errors may be small for some elements/filters, while are remarkable for others, which lead to inappropriate gradient direction during training, and thus bring notable accuracy drop. Instead, SQ quantizes a portion of elements/filters to low-bit with a stochastic probability inversely proportional to the quantization error, while keeping the other portion unchanged with full-precision. The quantized and full-precision portions are updated with corresponding gradients separately in each iteration. The SQ ratio is gradually increased until the whole network is quantized. This procedure can greatly compensate the quantization error and thus yield better accuracy for low-bit DNNs. Experiments show that SQ can consistently and significantly improve the accuracy for different low-bit DNNs on various datasets and various network structures.
Quantization has been proven to be a vital method for improving the inference efficiency of deep neural networks (DNNs). However, it is still challenging to strike a good balance between accuracy and efficiency while quantizing DNN weights or activation values from high-precision formats to their quantized counterparts. We propose a new method called elastic significant bit quantization (ESB) that controls the number of significant bits of quantized values to obtain better inference accuracy with fewer resources. We design a unified mathematical formula to constrain the quantized values of the ESB with a flexible number of significant bits. We also introduce a distribution difference aligner (DDA) to quantitatively align the distributions between the full-precision weight or activation values and quantized values. Consequently, ESB is suitable for various bell-shaped distributions of weights and activation of DNNs, thus maintaining a high inference accuracy. Benefitting from fewer significant bits of quantized values, ESB can reduce the multiplication complexity. We implement ESB as an accelerator and quantitatively evaluate its efficiency on FPGAs. Extensive experimental results illustrate that ESB quantization consistently outperforms state-of-the-art methods and achieves average accuracy improvements of 4.78%, 1.92%, and 3.56% over AlexNet, ResNet18, and MobileNetV2, respectively. Furthermore, ESB as an accelerator can achieve 10.95 GOPS peak performance of 1k LUTs without DSPs on the Xilinx ZCU102 FPGA platform. Compared with CPU, GPU, and state-of-the-art accelerators on FPGAs, the ESB accelerator can improve the energy efficiency by up to 65x, 11x, and 26x, respectively.
Network quantization, which aims to reduce the bit-lengths of the network weights and activations, has emerged as one of the key ingredients to reduce the size of neural networks for their deployments to resource-limited devices. In order to overcome the nature of transforming continuous activations and weights to discrete ones, recent study called Relaxed Quantization (RQ) [Louizos et al. 2019] successfully employ the popular Gumbel-Softmax that allows this transformation with efficient gradient-based optimization. However, RQ with this Gumbel-Softmax relaxation still suffers from bias-variance trade-off depending on the temperature parameter of Gumbel-Softmax. To resolve the issue, we propose a novel method, Semi-Relaxed Quantization (SRQ) that uses multi-class straight-through estimator to effectively reduce the bias and variance, along with a new regularization technique, DropBits that replaces dropout regularization to randomly drop the bits instead of neurons to further reduce the bias of the multi-class straight-through estimator in SRQ. As a natural extension of DropBits, we further introduce the way of learning heterogeneous quantization levels to find proper bit-length for each layer using DropBits. We experimentally validate our method on various benchmark datasets and network architectures, and also support the quantized lottery ticket hypothesis: learning heterogeneous quantization levels outperforms the case using the same but fixed quantization levels from scratch.