Do you want to publish a course? Click here

Improved Lossy Image Compression with Priming and Spatially Adaptive Bit Rates for Recurrent Networks

127   0   0.0 ( 0 )
 Added by Nick Johnston
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

We propose a method for lossy image compression based on recurrent, convolutional neural networks that outperforms BPG (4:2:0 ), WebP, JPEG2000, and JPEG as measured by MS-SSIM. We introduce three improvements over previous research that lead to this state-of-the-art result. First, we show that training with a pixel-wise loss weighted by SSIM increases reconstruction quality according to several metrics. Second, we modify the recurrent architecture to improve spatial diffusion, which allows the network to more effectively capture and propagate image information through the networks hidden state. Finally, in addition to lossless entropy coding, we use a spatially adaptive bit allocation algorithm to more efficiently use the limited number of bits to encode visually complex image regions. We evaluate our method on the Kodak and Tecnick image sets and compare against standard codecs as well recently published methods based on deep neural networks.

rate research

Read More

Quantizing deep networks with adaptive bit-widths is a promising technique for efficient inference across many devices and resource constraints. In contrast to static methods that repeat the quantization process and train different models for different constraints, adaptive quantization enables us to flexibly adjust the bit-widths of a single deep network during inference for instant adaptation in different scenarios. While existing research shows encouraging results on common image classification benchmarks, this paper investigates how to train such adaptive networks more effectively. Specifically, we present two novel techniques for quantizing deep neural networks with adaptive bit-widths of weights and activations. First, we propose a collaborative strategy to choose a high-precision teacher for transferring knowledge to the low-precision student while jointly optimizing the model with all bit-widths. Second, to effectively transfer knowledge, we develop a dynamic block swapping method by randomly replacing the blocks in the lower-precision student network with the corresponding blocks in the higher-precision teacher network. Extensive experiments on multiple image classification datasets including video classification benchmarks for the first time, well demonstrate the efficacy of our approach over state-of-the-art methods.
A large fraction of Internet traffic is now driven by requests from mobile devices with relatively small screens and often stringent bandwidth requirements. Due to these factors, it has become the norm for modern graphics-heavy websites to transmit low-resolution, low-bytecount image previews (thumbnails) as part of the initial page load process to improve apparent page responsiveness. Increasing thumbnail compression beyond the capabilities of existing codecs is therefore a current research focus, as any byte savings will significantly enhance the experience of mobile device users. Toward this end, we propose a general framework for variable-rate image compression and a novel architecture based on convolutional and deconvolutional LSTM recurrent networks. Our models address the main issues that have prevented autoencoder neural networks from competing with existing image compression algorithms: (1) our networks only need to be trained once (not per-image), regardless of input image dimensions and the desired compression rate; (2) our networks are progressive, meaning that the more bits are sent, the more accurate the image reconstruction; and (3) the proposed architecture is at least as efficient as a standard purpose-trained autoencoder for a given number of bits. On a large-scale benchmark of 32$times$32 thumbnails, our LSTM-based approaches provide better visual quality than (headerless) JPEG, JPEG2000 and WebP, with a storage size that is reduced by 10% or more.
This paper presents a set of full-resolution lossy image compression methods based on neural networks. Each of the architectures we describe can provide variable compression rates during deployment without requiring retraining of the network: each network need only be trained once. All of our architectures consist of a recurrent neural network (RNN)-based encoder and decoder, a binarizer, and a neural network for entropy coding. We compare RNN types (LSTM, associative LSTM) and introduce a new hybrid of GRU and ResNet. We also study one-shot versus additive reconstruction architectures and introduce a new scaled-additive framework. We compare to previous work, showing improvements of 4.3%-8.8% AUC (area under the rate-distortion curve), depending on the perceptual metric used. As far as we know, this is the first neural network architecture that is able to outperform JPEG at image compression across most bitrates on the rate-distortion curve on the Kodak dataset images, with and without the aid of entropy coding.
Deep learning based image compression has recently witnessed exciting progress and in some cases even managed to surpass transform coding based approaches that have been established and refined over many decades. However, state-of-the-art solutions for deep image compression typically employ autoencoders which map the input to a lower dimensional latent space and thus irreversibly discard information already before quantization. Due to that, they inherently limit the range of quality levels that can be covered. In contrast, traditional approaches in image compression allow for a larger range of quality levels. Interestingly, they employ an invertible transformation before performing the quantization step which explicitly discards information. Inspired by this, we propose a deep image compression method that is able to go from low bit-rates to near lossless quality by leveraging normalizing flows to learn a bijective mapping from the image space to a latent representation. In addition to this, we demonstrate further advantages unique to our solution, such as the ability to maintain constant quality results through re-encoding, even when performed multiple times. To the best of our knowledge, this is the first work to explore the opportunities for leveraging normalizing flows for lossy image compression.
We introduce a stop-code tolerant (SCT) approach to training recurrent convolutional neural networks for lossy image compression. Our methods introduce a multi-pass training method to combine the training goals of high-quality reconstructions in areas around stop-code masking as well as in highly-detailed areas. These methods lead to lower true bitrates for a given recursion count, both pre- and post-entropy coding, even using unstructured LZ77 code compression. The pre-LZ77 gains are achieved by trimming stop codes. The post-LZ77 gains are due to the highly unequal distributions of 0/1 codes from the SCT architectures. With these code compressions, the SCT architecture maintains or exceeds the image quality at all compression rates compared to JPEG and to RNN auto-encoders across the Kodak dataset. In addition, the SCT coding results in lower variance in image quality across the extent of the image, a characteristic that has been shown to be important in human ratings of image quality
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا