Do you want to publish a course? Click here

A Variable Vector Length SIMD Architecture for HW/SW Co-designed Processors

94   0   0.0 ( 0 )
 Added by Rakesh Kumar
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Hardware/Software (HW/SW) co-designed processors provide a promising solution to the power and complexity problems of the modern microprocessors by keeping their hardware simple. Moreover, they employ several runtime optimizations to improve the performance. One of the most potent optimizations, vectorization, has been utilized by modern microprocessors, to exploit the data level parallelism through SIMD accelerators. Due to their hardware simplicity, these accelerators have evolved in terms of width from 64-bit vectors in Intel MMX to 512-bit wide vector units in Intel Xeon Phi and AVX-512. Although SIMD accelerators are simple in terms of hardware design, code generation for them has always been a challenge. Moreover, increasing vector lengths with each new generation add to this complexity. This paper explores the scalability of SIMD accelerators from the code generation point of view. We discover that the SIMD accelerators remain underutilized at higher vector lengths mainly due to: a) reduced dynamic instruction stream coverage for vectorization and b) increase in permutations. Both of these factors can be attributed to the rigidness of the SIMD architecture. We propose a novel SIMD architecture that possesses the flexibility needed to support higher vector lengths. Furthermore, we propose Variable Length Vectorization and Selective Writing in a HW/SW co-designed environment to transparently target the flexibility of the proposed architecture. We evaluate our proposals using a set of SPECFP2006 and Physicsbench applications. Our experimental results show an average dynamic instruction reduction of 31% and 40% and an average speed up of 13% and 10% for SPECFP2006 and Physicsbench respectively, for 512-bit vector length, over the scalar baseline code.



rate research

Read More

To meet the extreme compute demands for deep learning across commercial and scientific applications, dataflow accelerators are becoming increasingly popular. While these domain-specific accelerators are not fully programmable like CPUs and GPUs, they retain varying levels of flexibility with respect to data orchestration, i.e., dataflow and tiling optimizations to enhance efficiency. There are several challenges when designing new algorithms and mapping approaches to execute the algorithms for a target problem on new hardware. Previous works have addressed these challenges individually. To address this challenge as a whole, in this work, we present a HW-SW co-design ecosystem for spatial accelerators called Union within the popular MLIR compiler infrastructure. Our framework allows exploring different algorithms and their mappings on several accelerator cost models. Union also includes a plug-and-play library of accelerator cost models and mappers which can easily be extended. The algorithms and accelerator cost models are connected via a novel mapping abstraction that captures the map space of spatial accelerators which can be systematically pruned based on constraints from the hardware, workload, and mapper. We demonstrate the value of Union for the community with several case studies which examine offloading different tensor operations(CONV/GEMM/Tensor Contraction) on diverse accelerator architectures using different mapping schemes.
Many FPGAs vendors have recently included embedded processors in their devices, like Xilinx with ARM-Cortex A cores, together with programmable logic cells. These devices are known as Programmable System on Chip (PSoC). Their ARM cores (embedded in the processing system or PS) communicates with the programmable logic cells (PL) using ARM-standard AXI buses. In this paper we analyses the performance of exhaustive data transfers between PS and PL for a Xilinx Zynq FPGA in a co-design real scenario for Convolutional Neural Networks (CNN) accelerator, which processes, in dedicated hardware, a stream of visual information from a neuromorphic visual sensor for classification. In the PS side, a Linux operating system is running, which recollects visual events from the neuromorphic sensor into a normalized frame, and then it transfers these frames to the accelerator of multi-layered CNNs, and read results, using an AXI-DMA bus in a per-layer way. As these kind of accelerators try to process information as quick as possible, data bandwidth becomes critical and maintaining a good balanced data throughput rate requires some considerations. We present and evaluate several data partitioning techniques to improve the balance between RX and TX transfer and two different ways of transfers management: through a polling routine at the userlevel of the OS, and through a dedicated interrupt-based kernellevel driver. We demonstrate that for longer enough packets, the kernel-level driver solution gets better timing in computing a CNN classification example. Main advantage of using kernel-level driver is to have safer solutions and to have tasks scheduling in the OS to manage other important processes for our application, like frames collection from sensors and their normalization.
Basic Linear Algebra Subprograms (BLAS) play key role in high performance and scientific computing applications. Experimentally, yesteryear multicore and General Purpose Graphics Processing Units (GPGPUs) are capable of achieving up to 15 to 57% of the theoretical peak performance at 65W to 240W respectively for compute bound operations like Double/Single Precision General Matrix Multiplication (XGEMM). For bandwidth bound operations like Single/Double precision Matrix-vector Multiplication (XGEMV) the performance is merely 5 to 7% of the theoretical peak performance in multicores and GPGPUs respectively. Achieving performance in BLAS requires moving away from conventional wisdom and evolving towards customized accelerator tailored for BLAS through algorithm-architecture co-design. In this paper, we present acceleration of Level-1 (vector operations), Level-2 (matrix-vector operations), and Level-3 (matrix-matrix operations) BLAS through algorithm architecture co-design on a Coarse-grained Reconfigurable Architecture (CGRA). We choose REDEFINE CGRA as a platform for our experiments since REDEFINE can be adapted to support domain of interest through tailor-made Custom Function Units (CFUs). For efficient sequential realization of BLAS, we present design of a Processing Element (PE) and perform micro-architectural enhancements in the PE to achieve up-to 74% of the theoretical peak performance of PE in DGEMM, 40% in DGEMV and 20% in double precision inner product (DDOT). We attach this PE to REDEFINE CGRA as a CFU and show the scalability of our solution. Finally, we show performance improvement of 3-140x in PE over commercially available Intel micro-architectures, ClearSpeed CSX700, FPGA, and Nvidia GPGPUs.
Processing-using-DRAM has been proposed for a limited set of basic operations (i.e., logic operations, addition). However, in order to enable the full adoption of processing-using-DRAM, it is necessary to provide support for more complex operations. In this paper, we propose SIMDRAM, a flexible general-purpose processing-using-DRAM framework that enables massively-parallel computation of a wide range of operations by using each DRAM column as an independent SIMD lane to perform bit-serial operations. SIMDRAM consists of three key steps to enable a desired operation in DRAM: (1) building an efficient majority-based representation of the desired operation, (2) mapping the operation input and output operands to DRAM rows and to the required DRAM commands that produce the desired operation, and (3) executing the operation. These three steps ensure efficient computation of any arbitrary and complex operation in DRAM. The first two steps give users the flexibility to efficiently implement and compute any desired operation in DRAM. The third step controls the execution flow of the in-DRAM computation, transparently from the user. We comprehensively evaluate SIMDRAMs reliability, area overhead, operation throughput, and energy efficiency using a wide range of operations and seven diverse real-world kernels to demonstrate its generality. Our results show that SIMDRAM provides up to 5.1x higher operation throughput and 2.5x higher energy efficiency than a state-of-the-art in-DRAM computing mechanism, and up to 2.5x speedup for real-world kernels while incurring less than 1% DRAM chip area overhead. Compared to a CPU and a high-end GPU, SIMDRAM is 257x and 31x more energy-efficient, while providing 93x and 6x higher operation throughput, respectively.
Nanopore genome sequencing is the key to enabling personalized medicine, global food security, and virus surveillance. The state-of-the-art base-callers adopt deep neural networks (DNNs) to translate electrical signals generated by nanopore sequencers to digital DNA symbols. A DNN-based base-caller consumes $44.5%$ of total execution time of a nanopore sequencing pipeline. However, it is difficult to quantize a base-caller and build a power-efficient processing-in-memory (PIM) to run the quantized base-caller. In this paper, we propose a novel algorithm/architecture co-designed PIM, Helix, to power-efficiently and accurately accelerate nanopore base-calling. From algorithm perspective, we present systematic error aware training to minimize the number of systematic errors in a quantized base-caller. From architecture perspective, we propose a low-power SOT-MRAM-based ADC array to process analog-to-digital conversion operations and improve power efficiency of prior DNN PIMs. Moreover, we revised a traditional NVM-based dot-product engine to accelerate CTC decoding operations, and create a SOT-MRAM binary comparator array to process read voting. Compared to state-of-the-art PIMs, Helix improves base-calling throughput by $6times$, throughput per Watt by $11.9times$ and per $mm^2$ by $7.5times$ without degrading base-calling accuracy.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا