Do you want to publish a course? Click here

Helix: Algorithm/Architecture Co-design for Accelerating Nanopore Genome Base-calling

86   0   0.0 ( 0 )
 Added by Qian Lou
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Nanopore genome sequencing is the key to enabling personalized medicine, global food security, and virus surveillance. The state-of-the-art base-callers adopt deep neural networks (DNNs) to translate electrical signals generated by nanopore sequencers to digital DNA symbols. A DNN-based base-caller consumes $44.5%$ of total execution time of a nanopore sequencing pipeline. However, it is difficult to quantize a base-caller and build a power-efficient processing-in-memory (PIM) to run the quantized base-caller. In this paper, we propose a novel algorithm/architecture co-designed PIM, Helix, to power-efficiently and accurately accelerate nanopore base-calling. From algorithm perspective, we present systematic error aware training to minimize the number of systematic errors in a quantized base-caller. From architecture perspective, we propose a low-power SOT-MRAM-based ADC array to process analog-to-digital conversion operations and improve power efficiency of prior DNN PIMs. Moreover, we revised a traditional NVM-based dot-product engine to accelerate CTC decoding operations, and create a SOT-MRAM binary comparator array to process read voting. Compared to state-of-the-art PIMs, Helix improves base-calling throughput by $6times$, throughput per Watt by $11.9times$ and per $mm^2$ by $7.5times$ without degrading base-calling accuracy.



rate research

Read More

Basic Linear Algebra Subprograms (BLAS) play key role in high performance and scientific computing applications. Experimentally, yesteryear multicore and General Purpose Graphics Processing Units (GPGPUs) are capable of achieving up to 15 to 57% of the theoretical peak performance at 65W to 240W respectively for compute bound operations like Double/Single Precision General Matrix Multiplication (XGEMM). For bandwidth bound operations like Single/Double precision Matrix-vector Multiplication (XGEMV) the performance is merely 5 to 7% of the theoretical peak performance in multicores and GPGPUs respectively. Achieving performance in BLAS requires moving away from conventional wisdom and evolving towards customized accelerator tailored for BLAS through algorithm-architecture co-design. In this paper, we present acceleration of Level-1 (vector operations), Level-2 (matrix-vector operations), and Level-3 (matrix-matrix operations) BLAS through algorithm architecture co-design on a Coarse-grained Reconfigurable Architecture (CGRA). We choose REDEFINE CGRA as a platform for our experiments since REDEFINE can be adapted to support domain of interest through tailor-made Custom Function Units (CFUs). For efficient sequential realization of BLAS, we present design of a Processing Element (PE) and perform micro-architectural enhancements in the PE to achieve up-to 74% of the theoretical peak performance of PE in DGEMM, 40% in DGEMV and 20% in double precision inner product (DDOT). We attach this PE to REDEFINE CGRA as a CFU and show the scalability of our solution. Finally, we show performance improvement of 3-140x in PE over commercially available Intel micro-architectures, ClearSpeed CSX700, FPGA, and Nvidia GPGPUs.
We developed a new base caller DeepNano-coral for nanopore sequencing, which is optimized to run on the Coral Edge Tensor Processing Unit, a small USB-attached hardware accelerator. To achieve this goal, we have designed ne
In nanopore sequencing, electrical signal is measured as DNA molecules pass through the sequencing pores. Translating these signals into DNA bases (base calling) is a highly non-trivial task, and its quality has a large impact on the sequencing accuracy. The most successful nanopore base callers to date use convolutional neural networks (CNN) to accomplish the task. Convolutional layers in CNNs are typically composed of filters with constant window size, performing best in analysis of signals with uniform speed. However, the speed of nanopore sequencing varies greatly both within reads and between sequencing runs. Here, we present dynamic pooling, a novel neural network component, which addresses this problem by adaptively adjusting the pooling ratio. To demonstrate the usefulness of dynamic pooling, we developed two base callers: Heron and Osprey. Heron improves the accuracy beyond the experimental high-accuracy base caller Bonito developed by Oxford Nanopore. Osprey is a fast base caller that can compete in accuracy with Guppy high-accuracy mode, but does not require GPU acceleration and achieves a near real-time speed on common desktop CPUs. Availability: https://github.com/fmfi-compbio/osprey, https://github.com/fmfi-compbio/heron Keywords: nanopore sequencing, base calling, convolutional neural networks, pooling
Motivation: The MinION device by Oxford Nanopore is the first portable sequencing device. MinION is able to produce very long reads (reads over 100~kBp were reported), however it suffers from high sequencing error rate. In this paper, we show that the error rate can be reduced by improving the base calling process. Results: We present the first open-source DNA base caller for the MinION sequencing platform by Oxford Nanopore. By employing carefully crafted recurrent neural networks, our tool improves the base calling accuracy compared to the default base caller supplied by the manufacturer. This advance may further enhance applicability of MinION for genome sequencing and various clinical applications. Availability: DeepNano can be downloaded at http://compbio.fmph.uniba.sk/deepnano/. Contact: [email protected]
The number of parameters in deep neural networks (DNNs) is scaling at about 5$times$ the rate of Moores Law. To sustain the pace of growth of the DNNs, new technologies and computing architectures are needed. Photonic computing systems are promising avenues, since they can perform the dominant general matrix-matrix multiplication (GEMM) operations in DNNs at a higher throughput than their electrical counterpart. However, purely photonic systems face several challenges including a lack of photonic memory, the need for conversion circuits, and the accumulation of noise. In this paper, we propose a hybrid electro-photonic system realizing the best of both worlds to accelerate DNNs. In contrast to prior work in photonic and electronic accelerators, we adopt a system-level perspective. Our electro-photonic system includes an electronic host processor and DRAM, and a custom electro-photonic hardware accelerator called ADEPT. The fused hardware accelerator leverages a photonic computing unit for performing highly-efficient GEMM operations and a digital electronic ASIC for storage and for performing non-GEMM operations. We also identify architectural optimization opportunities for improving the overall ADEPTs efficiency. We evaluate ADEPT using three state-of-the-art neural networks-ResNet-50, BERT-large, and RNN-T-to show its general applicability in accelerating todays DNNs. A head-to-head comparison of ADEPT with systolic array architectures shows that ADEPT can provide, on average, 7.19$times$ higher inference throughput per watt.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا