Do you want to publish a course? Click here

GALI: a Gamma-ray Burst Localizing Instrument

66   0   0.0 ( 0 )
 Added by Roi Rahin
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The detection of astrophysical Gamma-Ray Bursts (GRBs) has always been intertwined with the challenge of identifying the direction of the source. Accurate angular localization of better than a degree has been achieved to date only with heavy instruments on large satellites, and a limited field of view. The recent discovery of the association of GRBs with neutron star mergers gives new motivation for observing the entire $gamma$-ray sky at once with high sensitivity and accurate directional capability. We present a novel $gamma$-ray detector concept, which utilizes the mutual occultation between many small scintillators to reconstruct the GRB direction. We built an instrument with 90 (9,mm)$^3$ csi~scintillator cubes attached to silicon photomultipliers. Our laboratory prototype tested with a 60,keV source demonstrates an angular accuracy of a few degrees for $sim$25 ph,cm$^{-2}$ bursts. Simulations of realistic GRBs and background show that the achievable angular localization accuracy with a similar instrument occupying $1$l volume is $<2^circ$. The proposed concept can be easily scaled to fit into small satellites, as well as large missions.



rate research

Read More

The Gamma-Ray Burst Monitor (GBM) will significantly augment the science return from the Fermi Observatory in the study of Gamma-Ray Bursts (GRBs). The primary objective of GBM is to extend the energy range over which bursts are observed downward from the energy range of the Large Area Telescope (LAT) on Fermi into the hard X-ray range where extensive previous data exist. A secondary objective is to compute burst locations on-board to allow re-orientiong the spacecraft so that the LAT can observe delayed emission from bright bursts. GBM uses an array of twelve sodium iodide scintillators and two bismuth germanate scintillators to detect gamma rays from ~8 keV to ~40 MeV over the full unocculted sky. The on-board trigger threshold is ~0.7 photons/cm2/s (50-300 keV, 1 s peak). GBM generates on-board triggers for ~250 GRBs per year.
102 - B. Cordier , J. Wei , J.-L. Atteia 2015
We briefly present the science capabilities, the instruments, the operations, and the expected performance of the SVOM mission. SVOM (Space-based multiband astronomical Variable Objects Monitor) is a Chinese-French space mission dedicated to the study of Gamma-Ray Bursts (GRBs) in the next decade. The SVOM mission encompasses a satellite carrying four instruments to detect and localize the prompt GRB emission and measure the evolution of the afterglow in the visible band and in X-rays, a VHF communication system enabling the fast transmission of SVOM alerts to the ground, and a ground segment including a wide angle camera and two follow-up telescopes. The pointing strategy of the satellite has been optimized to favor the detection of GRBs located in the night hemisphere. This strategy enables the study of the optical emission in the first minutes after the GRB with robotic observatories and the early spectroscopy of the optical afterglow with large telescopes to measure the redshifts. The study of GRBs in the next decade will benefit from a number of large facilities in all wavelengths that will contribute to increase the scientific return of the mission. Finally, SVOM will operate in the era of the next generation of gravitational wave detectors, greatly contributing to searches for the electromagnetic counterparts of gravitational wave triggers at Xray and gamma-ray energies.
Gamma-ray Bursts (GRBs) are the most powerful transients in the Universe, over-shining for a few seconds all other $gamma$-ray sky sources. Their emission is produced within narrowly collimated relativistic jets launched after the core-collapse of massive stars or the merger of compact binaries. THESEUS will open a new window for the use of GRBs as cosmological tools by securing a statistically significant sample of high-$z$ GRBs, as well as by providing a large number of GRBs at low-intermediate redshifts extending the current samples to low luminosities. The wide energy band and unprecedented sensitivity of the Soft X-ray Imager (SXI) and X-Gamma rays Imaging Spectrometer (XGIS) instruments provide us a new route to unveil the nature of the prompt emission. For the first time, a full characterisation of the prompt emission spectrum from 0.3 keV to 10 MeV with unprecedented large count statistics will be possible revealing the signatures of synchrotron emission. SXI spectra, extending down to 0.3 keV, will constrain the local metal absorption and, for the brightest events, the progenitors ejecta composition. Investigation of the nature of the internal energy dissipation mechanisms will be obtained through the systematic study with XGIS of the sub-second variability unexplored so far over such a wide energy range. THESEUS will follow the spectral evolution of the prompt emission down to the soft X-ray band during the early steep decay and through the plateau phase with the unique ability of extending above 10 keV the spectral study of these early afterglow emission phases.
53 - Kevin C. Hurley 2020
We study the characteristics of Near-Earth-Networks (NENs) of gamma-ray burst (GRB) detectors, with the objective of defining a network with all-sky, full-time localization capability for multi-messenger astrophysics. We show that a minimum network consisting of 9 identical spacecraft in two orbits with different inclinations provides a good combination of sky coverage with several-degree localization accuracy with detector areas of 100 cm$^2$. In order to achieve this, careful attention must be paid to systematics. This includes accurate photon timing ($sim$ 0.1 ms), good energy resolution ($sim$ 10%), and reduction of Earth albedo, which are all within current capabilities. Such a network can be scaled in both the number and size of detectors to produce increased accuracy. We introduce a new method of localization which does not rely on on-board trigger systems or on the cross-correlation of time histories, but rather, in ground processing, tests positions over the entire sky and assigns probabilities to them to detect and localize events. We demonstrate its capabilities with simulations. If the NEN spacecraft can downlink at least several hundred time- and energy-tagged events per second, and the data can be ground-processed as they are received, it can in principle derive GRB positions in near-real time over the entire sky.
The Fermi Gamma-ray Burst Monitor (GBM) has detected over 1400 Gamma-Ray Bursts (GRBs) since it began science operations in July, 2008. We use a subset of over 300 GRBs localized by instruments such as Swift, the Fermi Large Area Telescope, INTEGRAL, and MAXI, or through triangulations from the InterPlanetary Network (IPN), to analyze the accuracy of GBM GRB localizations. We find that the reported statistical uncertainties on GBM localizations, which can be as small as 1 degree, underestimate the distance of the GBM positions to the true GRB locations and we attribute this to systematic uncertainties. The distribution of systematic uncertainties is well represented (68% confidence level) by a 3.7 degree Gaussian with a non-Gaussian tail that contains about 10% of GBM-detected GRBs and extends to approximately 14 degrees. A more complex model suggests that there is a dependence of the systematic uncertainty on the position of the GRB in spacecraft coordinates, with GRBs in the quadrants on the Y-axis better localized than those on the X-axis.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا