No Arabic abstract
As is well-known, the dimension of the space spanned by the non-degenerate invariant symmetric bilinear forms (NISes) on any simple finite-dimensional Lie algebra or Lie superalgebra is equal to at most 1 if the characteristic of the algebraically closed ground field is not 2. We prove that in characteristic 2, the superdimension of the space spanned by NISes can be equal to 0, or 1, or $0|1$, or $1|1$; it is equal to $1|1$ if and only if the Lie superalgebra is a queerification (defined in arXiv:1407.1695) of a simple classically restricted Lie algebra with a NIS (for examples, mainly in characteristic distinct from 2, see arXiv:1806.05505). We give examples of NISes on deformations (with both even and odd parameters) of several simple finite-dimensional Lie superalgebras in characteristic 2. We also recall examples of multiple NISes on simple Lie algebras over non-closed fields.
A Lie (super)algebra with a non-degenerate invariant symmetric bilinear form will be called a NIS-Lie (super)algebra. The double extension of a NIS-Lie (super)algebra is the result of simultaneously adding to it a central element and an outer derivation so that the larger algebra has also a NIS. Affine loop algebras, Lie (super)algebras with symmetrizable Cartan matrix over any field, Manin triples, symplectic reflection (super)algebras are among the Lie (super)algebras suitable to be doubly extended. We consider double extensions of Lie superalgebras in characteristic 2, and concentrate on peculiarities of these notions related with the possibility for the bilinear form, the center, and the derivation to be odd. Two Lie superalgebras we discovered by this method are indigenous to the characteristic 2.
We review the list of non-degenerate invariant (super)symmetric bilinear forms (briefly: NIS) on the following simple (relatives of) Lie (super)algebras: (a) with symmetrizable Cartan matrix of any growth, (b) with non-symmetrizable Cartan matrix of polynomial growth, (c) Lie (super)algebras of vector fields with polynomial coefficients, (d) stringy a.k.a. superconformal superalgebras, (e) queerifications of simple restricted Lie algebras. Over algebraically closed fields of positive characteristic, we establish when the deform (i.e., the result of deformation) of the known finite-dimensional simple Lie (super)algebra has a NIS. Amazingly, in most of the cases considered, if the Lie (super)algebra has a NIS, its deform has a NIS with the same Gram matrix after an identification of bases of the initial and deformed algebras. We do not consider odd parameters of deformations. Closely related with simple Lie (super)algebras with NIS is the notion of doubly extended Lie (super)algebras of which affine Kac--Moody (super)algebras are the most known examples.
A Lie (super)algebra with a non-degenerate invariant symmetric bilinear form $B$ is called a nis-(super)algebra. The double extension $mathfrak{g}$ of a nis-(super)algebra $mathfrak{a}$ is the result of simultaneous adding to $mathfrak{a}$ a central element and a derivation so that $mathfrak{g}$ is a nis-algebra. Loop algebras with values in simple complex Lie algebras are most known among the Lie (super)algebras suitable to be doubly extended. In characteristic 2 the notion of double extension acquires specific features. Restricted Lie (super)algebras are among the most interesting modular Lie superalgebras. In characteristic 2, using Grozmans Mathematica-based package SuperLie, we list double extensions of restricted Lie superalgebras preserving the non-degenerate closed 2-forms with constant coefficients. The results are proved for the number of indeterminates ranging from 4 to 7 - sufficient to conjecture the pattern for larger numbers. Considering multigradings allowed us to accelerate computations up to 100 times.
We present new constructions of several of the exceptional simple Lie superalgebras in characteristic $p = 3$ and $p = 5$ by considering the images of exceptional Lie algebras with a nilpotent derivation under the semisimplification functor from $mathrm{Rep} mathbf{alpha}_p$ to the Verlinde category $mathrm{Ver}_p$.
In this paper the authors introduce a class of parabolic subalgebras for classical simple Lie superalgebras associated to the detecting subalgebras introduced by Boe, Kujawa and Nakano. These parabolic subalgebras are shown to have good cohomological properties governed by the Bott-Borel-Weil theorem involving the zero component of the Lie superalgebra in conjunction with the odd roots. These results are later used to verify an open conjecture given by Boe, Kujawa and Nakano pertaining to the equality of various support varieties.