No Arabic abstract
Recovering the wavelength from disordered speckle patterns has become an exciting prospect as a wavelength measurement method due to its high resolution and simple design. In previous studies, panel cameras have been used to detect the subtle differences between speckle patterns. However, the volume, bandwidth, sensitivity, and cost (in non-visible bands) associated with panel cameras have hindered their utility in broader applications, especially in high speed and low-cost measurements. In this work, we broke the limitations imposed by panel cameras by using a quadrant detector (QD) to capture the speckle images. In the scheme of QD detection, speckle images are directly filtered by convolution, where the kernel is equal to one quarter of a speckle pattern. First, we proposed an up-sampling algorithm to pre-process the QD data. Then a new convolution neural network (CNN) based algorithm, shallow residual network (SRN), was proposed to train the up-sampled images. The experimental results show that a resolution of 4 fm (~ 0.5 MHz) was achieved at 1550nm with an updating speed of ~ 1 kHz. More importantly, the SRN shows excellent robustness. The wavelength can be precisely reconstructed from raw QD data without any averaging, even where there exists apparent noise. The low-cost, simple structure, high speed and robustness of this design promote the speckle-based wavemeter to the industrial grade. In addition, without the restriction of panel cameras, it is believed that this wavemeter opens new routes in many other fields, such as distributed optical fiber sensors, optical communications, and laser frequency stabilization.
The accurate determination and control of the wavelength of light is fundamental to many fields of science. Speckle patterns resulting from the interference of multiple reflections in disordered media are well-known to scramble the information content of light by complex but linear processes. However, these patterns are, in fact, exceptionally rich in information about the illuminating source. We use a fibre-coupled integrating sphere to generate wavelength-dependent speckle patterns, in combination with algorithms based on the transmission matrix method and principal component analysis, to realize a broadband and sensitive wavemeter. We demonstrate sub-femtometre wavelength resolution at a centre wavelength of 780 nm and a broad calibrated measurement range from 488 to 1064 nm. This is comparable with or exceeding the performance of conventional wavemeters. Using this speckle wavemeter as part of a feedback loop, we stabilize a 780 nm diode laser to achieve a linewidth better than 1 MHz.
The measurement of the wavelength of light using speckle is a promising tool for the realization of compact and precise wavemeters and spectrometers. However, the resolution of these devices is limited by strong correlations between the speckle patterns produced by closely-spaced wavelengths. Here, we show how principal component analysis of speckle images provides a route to overcome this limit. Using this, we demonstrate a compact wavemeter which measures wavelength changes of a stabilized diode laser of 5.3 am, eight orders of magnitude below the speckle correlation limit.
Dual-comb spectroscopy has emerged as an indispensable analytical technique in applications that require high resolution and broadband coverage within short acquisition times. Its experimental realization, however, remains hampered by intricate experimental setups with large power consumption. Here, we demonstrate an ultra-simple free-running dual-comb spectrometer realized in a single all-fiber cavity suitable for the most demanding Doppler-limited measurements. Our dual-comb laser utilizes just a few basic fiber components, allows to tailor the repetition rate difference, and requires only 350 mW of electrical power for sustained operation over a dozen of hours. As a demonstration, we measure low-pressure hydrogen cyanide within 1.7 THz bandwidth, and obtain better than 1% precision over a terahertz in 200 ms enabled by a drastically simplified all-computational phase correction algorithm. The combination of the unprecedented setup simplicity, comb tooth resolution and high spectroscopic precision paves the way for proliferation of frequency comb spectroscopy even outside the laboratory.
We build a resonant fiber optic gyro based on Kagome hollow-core fiber. A semi-bulk cavity architecture based on a 18-m-long Kagome fiber permits to achieve a cavity finesse of 23 with a resonance linewidth of 700 kHz. An optimized Pound-Drever-Hall servo-locking scheme is used to probe the cavity in reflection. Closed-loop operation of the gyroscope permits to reach an angular random walk as small as 0.004$^circ/sqrt{mathrm{h}}$ and a bias stability of 0.45$^circ$/h over 0.5 s of integration time.
Fiber-based optical microcavities exhibit high quality factor and low mode volume resonances that make them attractive for coupling light to individual atoms or other microscopic systems. Moreover, their low mass should lead to excellent mechanical response up to high frequencies, opening the possibility for high bandwidth stabilization of the cavity length. Here, we demonstrate a locking bandwidth of 44 kHz achieved using a simple, compact design that exploits these properties. Owing to the simplicity of fiber feedthroughs and lack of free-space alignment, this design is inherently compatible with vacuum and cryogenic environments. We measure the transfer function of the feedback circuit (closed-loop) and the cavity mount itself (open-loop), which, combined with simulations of the mechanical response of our device, provide insight into underlying limitations of the design as well as further improvements that can be made.