No Arabic abstract
The accurate determination and control of the wavelength of light is fundamental to many fields of science. Speckle patterns resulting from the interference of multiple reflections in disordered media are well-known to scramble the information content of light by complex but linear processes. However, these patterns are, in fact, exceptionally rich in information about the illuminating source. We use a fibre-coupled integrating sphere to generate wavelength-dependent speckle patterns, in combination with algorithms based on the transmission matrix method and principal component analysis, to realize a broadband and sensitive wavemeter. We demonstrate sub-femtometre wavelength resolution at a centre wavelength of 780 nm and a broad calibrated measurement range from 488 to 1064 nm. This is comparable with or exceeding the performance of conventional wavemeters. Using this speckle wavemeter as part of a feedback loop, we stabilize a 780 nm diode laser to achieve a linewidth better than 1 MHz.
The Pound-Drever-Hall laser stabilization technique requires a fast, low-noise photodetector. We present a simple photodetector design that uses a transformer as an intermediary between a photodiode and cascaded low-noise radio-frequency amplifiers. Our implementation using a silicon photodiode yields a detector with 50 MHz bandwidth, gain $> 10^5$ V/A, and input current noise $< 4$ pA/$sqrt{mathrm{Hz}}$, allowing us to obtain shot-noise-limited performance with low optical power.
Recovering the wavelength from disordered speckle patterns has become an exciting prospect as a wavelength measurement method due to its high resolution and simple design. In previous studies, panel cameras have been used to detect the subtle differences between speckle patterns. However, the volume, bandwidth, sensitivity, and cost (in non-visible bands) associated with panel cameras have hindered their utility in broader applications, especially in high speed and low-cost measurements. In this work, we broke the limitations imposed by panel cameras by using a quadrant detector (QD) to capture the speckle images. In the scheme of QD detection, speckle images are directly filtered by convolution, where the kernel is equal to one quarter of a speckle pattern. First, we proposed an up-sampling algorithm to pre-process the QD data. Then a new convolution neural network (CNN) based algorithm, shallow residual network (SRN), was proposed to train the up-sampled images. The experimental results show that a resolution of 4 fm (~ 0.5 MHz) was achieved at 1550nm with an updating speed of ~ 1 kHz. More importantly, the SRN shows excellent robustness. The wavelength can be precisely reconstructed from raw QD data without any averaging, even where there exists apparent noise. The low-cost, simple structure, high speed and robustness of this design promote the speckle-based wavemeter to the industrial grade. In addition, without the restriction of panel cameras, it is believed that this wavemeter opens new routes in many other fields, such as distributed optical fiber sensors, optical communications, and laser frequency stabilization.
Many areas of optical science require an accurate measurement of optical spectra. Devices based on laser speckle promise compact wavelength measurement, with attometer-level sensitivity demonstrated for single wavelength laser fields. The measurement of multimode spectra using this approach would be attractive, yet this is currently limited to picometer resolution. Here, we present a method to improve the resolution and precision of speckle-based multi-wavelength measurements. We measure multiple wavelengths simultaneously, in a device comprising a single 1 m-long step-index multimode fiber and a fast camera. Independent wavelengths separated by as little as 1 fm are retrieved with 0.2 fm precision using Principal Component Analysis. The method offers a viable way to measure sparse spectra containing multiple individual lines and is likely to find application in the tracking of multiple lasers in fields such as portable quantum technologies and optical telecommunications.
Wavefront sensors are an important tool to characterize coherent beams of extreme ultraviolet radiation. However, conventional Hartmann-type sensors do not allow for independent wavefront characterization of different spectral components that may be present in a beam, which limits their applicability for intrinsically broadband high-harmonic generation (HHG) sources. Here we introduce a wavefront sensor that measures the wavefronts of all the harmonics in a HHG beam in a single camera exposure. By replacing the mask apertures with transmission gratings at different orientations, we simultaneously detect harmonic wavefronts and spectra, and obtain sensitivity to spatiotemporal structure such as pulse front tilt as well. We demonstrate the capabilities of the sensor through a parallel measurement of the wavefronts of 9 harmonics in a wavelength range between 25 and 49 nm, with up to lambda/32 precision.
We consider the phase stability of a local oscillator (or laser) locked to a cavity QED system comprised of atoms with an ultra-narrow optical transition. The atoms are cooled to millikelvin temperatures and then released into the optical cavity. Although the atomic motion introduces Doppler broadening, the standing wave nature of the cavity causes saturated absorption features to appear, which are much narrower than the Doppler width. These features can be used to achieve an extremely high degree of phase stabilization, competitive with the current state-of-the-art. Furthermore, the inhomogeneity introduced by finite atomic velocities can cause optical bistability to disappear, resulting in no regions of dynamic instability and thus enabling a new regime accessible to experiments where optimum stabilization may be achieved.