Do you want to publish a course? Click here

Exploring Knowledge Distillation of a Deep Neural Network for Multi-Script identification

77   0   0.0 ( 0 )
 Added by Nibaran Das
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Multi-lingual script identification is a difficult task consisting of different language with complex backgrounds in scene text images. According to the current research scenario, deep neural networks are employed as teacher models to train a smaller student network by utilizing the teacher models predictions. This process is known as dark knowledge transfer. It has been quite successful in many domains where the final result obtained is unachievable through directly training the student network with a simple architecture. In this paper, we explore dark knowledge transfer approach using long short-term memory(LSTM) and CNN based assistant model and various deep neural networks as the teacher model, with a simple CNN based student network, in this domain of multi-script identification from natural scene text images. We explore the performance of different teacher models and their ability to transfer knowledge to a student network. Although the small student networks limited size, our approach obtains satisfactory results on a well-known script identification dataset CVSI-2015.



rate research

Read More

In real applications, different computation-resource devices need different-depth networks (e.g., ResNet-18/34/50) with high-accuracy. Usually, existing methods either design multiple networks and train them independently, or construct depth-level/width-level dynamic neural networks which is hard to prove the accuracy of each sub-net. In this article, we propose an elegant Depth-Level Dynamic Neural Network (DDNN) integrated different-depth sub-nets of similar architectures. To improve the generalization of sub-nets, we design the Embedded-Knowledge-Distillation (EKD) training mechanism for the DDNN to implement knowledge transfer from the teacher (full-net) to multiple students (sub-nets). Specifically, the Kullback-Leibler (KL) divergence is introduced to constrain the posterior class probability consistency between full-net and sub-nets, and self-attention distillation on the same resolution feature of different depth is addressed to drive more abundant feature representations of sub-nets. Thus, we can obtain multiple high-accuracy sub-nets simultaneously in a DDNN via the online knowledge distillation in each training iteration without extra computation cost. Extensive experiments on CIFAR-10/100, and ImageNet datasets demonstrate that sub-nets in DDNN with EKD training achieve better performance than individually training networks while preserving the original performance of full-nets.
Person re-identification (ReID) focuses on identifying people across different scenes in video surveillance, which is usually formulated as a binary classification task or a ranking task in current person ReID approaches. In this paper, we take both tasks into account and propose a multi-task deep network (MTDnet) that makes use of their own advantages and jointly optimize the two tasks simultaneously for person ReID. To the best of our knowledge, we are the first to integrate both tasks in one network to solve the person ReID. We show that our proposed architecture significantly boosts the performance. Furthermore, deep architecture in general requires a sufficient dataset for training, which is usually not met in person ReID. To cope with this situation, we further extend the MTDnet and propose a cross-domain architecture that is capable of using an auxiliary set to assist training on small target sets. In the experiments, our approach outperforms most of existing person ReID algorithms on representative datasets including CUHK03, CUHK01, VIPeR, iLIDS and PRID2011, which clearly demonstrates the effectiveness of the proposed approach.
Deep neural networks have rapidly become the mainstream method for face recognition. However, deploying such models that contain an extremely large number of parameters to embedded devices or in application scenarios with limited memory footprint is challenging. In this work, we present an extremely lightweight and accurate face recognition solution. We utilize neural architecture search to develop a new family of face recognition models, namely PocketNet. We also propose to enhance the verification performance of the compact model by presenting a novel training paradigm based on knowledge distillation, namely the multi-step knowledge distillation. We present an extensive experimental evaluation and comparisons with the recent compact face recognition models on nine different benchmarks including large-scale evaluation benchmarks such as IJB-B, IJB-C, and MegaFace. PocketNets have consistently advanced the state-of-the-art (SOTA) face recognition performance on nine mainstream benchmarks when considering the same level of model compactness. With 0.92M parameters, our smallest network PocketNetS-128 achieved very competitive results to recent SOTA compacted models that contain more than 4M parameters. Training codes and pre-trained models are publicly released https://github.com/fdbtrs/PocketNet.
175 - Yuang Liu , Wei Zhang , Jun Wang 2021
Knowledge distillation~(KD) is an effective learning paradigm for improving the performance of lightweight student networks by utilizing additional supervision knowledge distilled from teacher networks. Most pioneering studies either learn from only a single teacher in their distillation learning methods, neglecting the potential that a student can learn from multiple teachers simultaneously, or simply treat each teacher to be equally important, unable to reveal the different importance of teachers for specific examples. To bridge this gap, we propose a novel adaptive multi-teacher multi-level knowledge distillation learning framework~(AMTML-KD), which consists two novel insights: (i) associating each teacher with a latent representation to adaptively learn instance-level teacher importance weights which are leveraged for acquiring integrated soft-targets~(high-level knowledge) and (ii) enabling the intermediate-level hints~(intermediate-level knowledge) to be gathered from multiple teachers by the proposed multi-group hint strategy. As such, a student model can learn multi-level knowledge from multiple teachers through AMTML-KD. Extensive results on publicly available datasets demonstrate the proposed learning framework ensures student to achieve improved performance than strong competitors.
Previous Online Knowledge Distillation (OKD) often carries out mutually exchanging probability distributions, but neglects the useful representational knowledge. We therefore propose Multi-view Contrastive Learning (MCL) for OKD to implicitly capture correlations of feature embeddings encoded by multiple peer networks, which provide various views for understanding the input data instances. Benefiting from MCL, we can learn a more discriminative representation space for classification than previous OKD methods. Experimental results on image classification demonstrate that our MCL-OKD outperforms other state-of-the-art OKD methods by large margins without sacrificing additional inference cost. Codes are available at https://github.com/winycg/MCL-OKD.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا