No Arabic abstract
Transition-edge sensors (TESs) are used as very sensitive thermometers in microcalorimeters aimed at detection of different wavelengths. In particular, for soft X-ray astrophysics, science goals require very high resolution microcalorimeters which can be achieved with TESs coupled to suitable absorbers. For many applications there is also need for a high number of pixels which typically requires multiplexing in the readout stage. Frequency Domain Multiplexing (FDM) is a common scheme and is the baseline proposed for the ATHENA mission. FDM requires biasing the TES in AC at MHz frequencies. Recently there has been reported degradation in performances under AC with respect to DC bias. In order to assess the performances of TESs to be used with FDM, it is thus of great interest to compare the performances of the same device both under AC and DC bias. This requires two different measurement setups with different processes for making the characterization. We report in this work the preliminary results of a single pixel characterization performed on a TiAu TES under AC and afterwards under DC bias in different facilities. Extraction of dynamical parameters and noise performances are compared in both cases as a first stage for further AC/DC comparison of these devices.
We are developing a kilo-pixels Ti/Au TES array as a backup option for Athena X-IFU. Here we report on single-pixel performance of a 32$times$32 array operated in a Frequency Division Multiplexing (FDM) readout system, with bias frequencies in the range 1-5 MHz. We have tested the pixels response at several photon energies, by means of a $^{55}$Fe radioactive source (emitting Mn-K$alpha$ at 5.9 keV) and a Modulated X-ray Source (MXS, providing Cr-K$alpha$ at 5.4 keV and Cu-K$alpha$ at 8.0 keV). First, we report the procedure used to perform the detector energy scale calibration, usually achieving a calibration accuracy better than $sim$ 0.5 eV in the 5.4 - 8.9 keV energy range. Then, we present the measured energy resolution at the different energies (best single pixel performance: $Delta$E$_{FWHM}$ = 2.40 $pm$ 0.09 eV @ 5.4 keV; 2.53 $pm$ 0.10 eV @ 5.9 keV; 2.78 $pm$ 0.16 eV @ 8.0 keV), investigating also the performance dependency from the pixel bias frequency and the count rate. Thanks to long background measurements ($sim$ 1 day), we finally detected also the Al-K$alpha$ line at 1.5 keV, generated by fluorescence inside the experimental setup. We analyzed this line to obtain a first assessment of the single-pixel performance also at low energy ($Delta$E$_{FWHM}$ = 1.91 eV $pm$ 0.21 eV @ 1.5 keV), and to evaluate the linearity of the detector response in a large energy band (1.5 - 8.9 keV).
Transition-edge sensor X-ray microcalorimeters are usually calibrated empirically, as the most widely-used calibration metric, optimal filtered pulse height (OFPH), in general has an unknown dependance on photon energy, $E_{gamma}$. Because the calibration function can only be measured at specific points where photons of a known energy can be produced, this unknown dependence of OFPH on $E_{gamma}$ leads to calibration errors and the need for time-intensive calibration measurements and analysis. A calibration metric that is nearly linear as a function of $E_{gamma}$ could help alleviate these problems. In this work, we assess the linearity of a physically motivated calibration metric, $E_{Joule}$. We measure calibration pulses in the range 4.5 keV$<$$E_{gamma}$$<$9.6 keV with detectors optimized for 6 keV photons to compare the linearity properties of $E_{Joule}$ to OFPH. In these test data sets, we find that $E_{Joule}$ fits a linear function an order of magnitude better than OFPH. Furthermore, calibration functions using $E_{J}$, an optimized version of $E_{Joule}$, are linear within the 2-3 eV noise of the data.
We are developing X-ray microcalorimeters as a backup option for the baseline detectors in the X-IFU instrument on board the ATHENA space mission led by ESA and to be launched in the early 2030s.5$times$5 mixed arrays with TiAu transition-edge sensor (TES), which have different high aspect ratios and thus high resistances, have been designed and fabricated to meet the energy resolution requirement of the X-IFU instrument. Such arrays can also be used to optimise the performance of the Frequency Domain Multiplexing (FDM) readout and lead to the final steps for the fabrication of a large detector array. In this work we present the experimental results from tens of the devices with an aspect ratio (length-to-width) ranging from 1-to-1 up to 6-to-1, measured in a single-pixel mode with a FDM readout system developed at SRON/VTT. We observed a nominal energy resolution of about 2.5 eV at 5.9 keV at bias frequencies ranging from 1 to 5 MHz. These detectors are proving to be the best TES microcalorimeters ever reported in Europe, being able to meet not only the requirements of the X-IFU instrument, but also those of other future challenging X-ray space missions, fundamental physics experiments, plasma characterization and material analysis.
We present the first operation of the Avalanche Photodiode (APD) from Hamamatsu to xenon scintillation light and to direct X-rays of 22.1 keV and 5.9 keV. A large non-linear response was observed for the direct X-ray detection. At 415 V APD bias voltage it was of about 30 % for 22.1 keV and about 45 % for 5.9 keV. The quantum efficiency for 172 nm photons has been measured to be 69 +/- 15 %.
We study the mechanism of instability in transition edge sensor (TES) bolometers used for ground based observations of the Cosmic Microwave Background (CMB) at 270GHz. The instability limits the range of useful operating resistances of the TES down to $approx$ 50% of $R_n$, and due to variations in detector properties and optical loading within a column of multiplexed detectors, limits the effective on sky yield. Using measurements of the electrical impedance of the detectors, we show the instability is due to the increased bolometer leg $G$ for higher-frequency detection inducing decoupling of the palladium-gold heat capacity from the thermistor. We demonstrate experimentally that the limiting thermal resistance is due to the small cross sectional area of the silicon nitride bolometer island, and so is easily fixed by layering palladium-gold over an oxide protected TES. The resulting detectors can be biased down to a resistance $approx$10% of $R_n$.