Do you want to publish a course? Click here

L2E: Learning to Exploit Your Opponent

70   0   0.0 ( 0 )
 Added by Zhe Wu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Opponent modeling is essential to exploit sub-optimal opponents in strategic interactions. Most previous works focus on building explicit models to directly predict the opponents styles or strategies, which require a large amount of data to train the model and lack adaptability to unknown opponents. In this work, we propose a novel Learning to Exploit (L2E) framework for implicit opponent modeling. L2E acquires the ability to exploit opponents by a few interactions with different opponents during training, thus can adapt to new opponents with unknown styles during testing quickly. We propose a novel opponent strategy generation algorithm that produces effective opponents for training automatically. We evaluate L2E on two poker games and one grid soccer game, which are the commonly used benchmarks for opponent modeling. Comprehensive experimental results indicate that L2E quickly adapts to diverse styles of unknown opponents.

rate research

Read More

When one agent interacts with a multi-agent environment, it is challenging to deal with various opponents unseen before. Modeling the behaviors, goals, or beliefs of opponents could help the agent adjust its policy to adapt to different opponents. In addition, it is also important to consider opponents who are learning simultaneously or capable of reasoning. However, existing work usually tackles only one of the aforementioned types of opponent. In this paper, we propose model-based opponent modeling (MBOM), which employs the environment model to adapt to all kinds of opponent. MBOM simulates the recursive reasoning process in the environment model and imagines a set of improving opponent policies. To effectively and accurately represent the opponent policy, MBOM further mixes the imagined opponent policies according to the similarity with the real behaviors of opponents. Empirically, we show that MBOM achieves more effective adaptation than existing methods in competitive and cooperative environments, respectively with different types of opponent, i.e., fixed policy, naive learner, and reasoning learner.
Interactive user interfaces need to continuously evolve based on the interactions that a user has (or does not have) with the system. This may require constant exploration of various options that the system may have for the user and obtaining signals of user preferences on those. However, such an exploration, especially when the set of available options itself can change frequently, can lead to sub-optimal user experiences. We present Explore-Exploit: a framework designed to collect and utilize user feedback in an interactive and online setting that minimizes regressions in end-user experience. This framework provides a suite of online learning operators for various tasks such as personalization ranking, candidate selection and active learning. We demonstrate how to integrate this framework with run-time services to leverage online and interactive machine learning out-of-the-box. We also present results demonstrating the efficiencies that can be achieved using the Explore-Exploit framework.
Reward shaping (RS) is a powerful method in reinforcement learning (RL) for overcoming the problem of sparse or uninformative rewards. However, RS typically relies on manually engineered shaping-reward functions whose construction is time-consuming and error-prone. It also requires domain knowledge which runs contrary to the goal of autonomous learning. We introduce Reinforcement Learning Optimal Shaping Algorithm (ROSA), an automated RS framework in which the shaping-reward function is constructed in a novel Markov game between two agents. A reward-shaping agent (Shaper) uses switching controls to determine which states to add shaping rewards and their optimal values while the other agent (Controller) learns the optimal policy for the task using these shaped rewards. We prove that ROSA, which easily adopts existing RL algorithms, learns to construct a shaping-reward function that is tailored to the task thus ensuring efficient convergence to high performance policies. We demonstrate ROSAs congenial properties in three carefully designed experiments and show its superior performance against state-of-the-art RS algorithms in challenging sparse reward environments.
Recent advances in deep reinforcement learning (RL) have led to considerable progress in many 2-player zero-sum games, such as Go, Poker and Starcraft. The purely adversarial nature of such games allows for conceptually simple and principled application of RL methods. However real-world settings are many-agent, and agent interactions are complex mixtures of common-interest and competitive aspects. We consider Diplomacy, a 7-player board game designed to accentuate dilemmas resulting from many-agent interactions. It also features a large combinatorial action space and simultaneous moves, which are challenging for RL algorithms. We propose a simple yet effective approximate best response operator, designed to handle large combinatorial action spaces and simultaneous moves. We also introduce a family of policy iteration methods that approximate fictitious play. With these methods, we successfully apply RL to Diplomacy: we show that our agents convincingly outperform the previous state-of-the-art, and game theoretic equilibrium analysis shows that the new process yields consistent improvements.
103 - Meng Zhang , Ermin Wei , 2021
Federated learning enables machine learning algorithms to be trained over a network of multiple decentralized edge devices without requiring the exchange of local datasets. Successfully deploying federated learning requires ensuring that agents (e.g., mobile devices) faithfully execute the intended algorithm, which has been largely overlooked in the literature. In this study, we first use risk bounds to analyze how the key feature of federated learning, unbalanced and non-i.i.d. data, affects agents incentives to voluntarily participate and obediently follow traditional federated learning algorithms. To be more specific, our analysis reveals that agents with less typical data distributions and relatively more samples are more likely to opt out of or tamper with federated learning algorithms. To this end, we formulate the first faithful implementation problem of federated learning and design two faithful federated learning mechanisms which satisfy economic properties, scalability, and privacy. Further, the time complexity of computing all agents payments in the number of agents is $mathcal{O}(1)$. First, we design a Faithful Federated Learning (FFL) mechanism which approximates the Vickrey-Clarke-Groves (VCG) payments via an incremental computation. We show that it achieves (probably approximate) optimality, faithful implementation, voluntary participation, and some other economic properties (such as budget balance). Second, by partitioning agents into several subsets, we present a scalable VCG mechanism approximation. We further design a scalable and Differentially Private FFL (DP-FFL) mechanism, the first differentially private faithful mechanism, that maintains the economic properties. Our mechanism enables one to make three-way performance tradeoffs among privacy, the iterations needed, and payment accuracy loss.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا