Do you want to publish a course? Click here

A Thorough View of Exact Inference in Graphs from the Degree-4 Sum-of-Squares Hierarchy

56   0   0.0 ( 0 )
 Added by Kevin Bello
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Performing inference in graphs is a common task within several machine learning problems, e.g., image segmentation, community detection, among others. For a given undirected connected graph, we tackle the statistical problem of exactly recovering an unknown ground-truth binary labeling of the nodes from a single corrupted observation of each edge. Such problem can be formulated as a quadratic combinatorial optimization problem over the boolean hypercube, where it has been shown before that one can (with high probability and in polynomial time) exactly recover the ground-truth labeling of graphs that have an isoperimetric number that grows with respect to the number of nodes (e.g., complete graphs, regular expanders). In this work, we apply a powerful hierarchy of relaxations, known as the sum-of-squares (SoS) hierarchy, to the combinatorial problem. Motivated by empirical evidence on the improvement in exact recoverability, we center our attention on the degree-4 SoS relaxation and set out to understand the origin of such improvement from a graph theoretical perspective. We show that the solution of the dual of the relaxed problem is related to finding edge weights of the Johnson and Kneser graphs, where the weights fulfill the SoS constraints and intuitively allow the input graph to increase its algebraic connectivity. Finally, as byproduct of our analysis, we derive a novel Cheeger-type lower bound for the algebraic connectivity of graphs with signed edge weights.



rate research

Read More

303 - Boaz Barak , Ankur Moitra 2015
In the noisy tensor completion problem we observe $m$ entries (whose location is chosen uniformly at random) from an unknown $n_1 times n_2 times n_3$ tensor $T$. We assume that $T$ is entry-wise close to being rank $r$. Our goal is to fill in its missing entries using as few observations as possible. Let $n = max(n_1, n_2, n_3)$. We show that if $m = n^{3/2} r$ then there is a polynomial time algorithm based on the sixth level of the sum-of-squares hierarchy for completing it. Our estimate agrees with almost all of $T$s entries almost exactly and works even when our observations are corrupted by noise. This is also the first algorithm for tensor completion that works in the overcomplete case when $r > n$, and in fact it works all the way up to $r = n^{3/2-epsilon}$. Our proofs are short and simple and are based on establishing a new connection between noisy tensor completion (through the language of Rademacher complexity) and the task of refuting random constant satisfaction problems. This connection seems to have gone unnoticed even in the context of matrix completion. Furthermore, we use this connection to show matching lower bounds. Our main technical result is in characterizing the Rademacher complexity of the sequence of norms that arise in the sum-of-squares relaxations to the tensor nuclear norm. These results point to an interesting new direction: Can we explore computational vs. sample complexity tradeoffs through the sum-of-squares hierarchy?
The degree-$4$ Sum-of-Squares (SoS) SDP relaxation is a powerful algorithm that captures the best known polynomial time algorithms for a broad range of problems including MaxCut, Sparsest Cut, all MaxCSPs and tensor PCA. Despite being an explicit algorithm with relatively low computational complexity, the limits of degree-$4$ SoS SDP are not well understood. For example, existing integrality gaps do not rule out a $(2-varepsilon)$-algorithm for Vertex Cover or a $(0.878+varepsilon)$-algorithm for MaxCut via degree-$4$ SoS SDPs, each of which would refute the notorious Unique Games Conjecture. We exhibit an explicit mapping from solutions for degree-$2$ Sum-of-Squares SDP (Goemans-Williamson SDP) to solutions for the degree-$4$ Sum-of-Squares SDP relaxation on boolean variables. By virtue of this mapping, one can lift lower bounds for degree-$2$ SoS SDP relaxation to corresponding lower bounds for degree-$4$ SoS SDPs. We use this approach to obtain degree-$4$ SoS SDP lower bounds for MaxCut on random $d$-regular graphs, Sherington-Kirkpatrick model from statistical physics and PSD Grothendieck problem. Our constructions use the idea of pseudocalibration towards candidate SDP vectors, while it was previously only used to produce the candidate matrix which one would show is PSD using much technical work. In addition, we develop a different technique to bound the spectral norms of _graphical matrices_ that arise in the context of SoS SDPs. The technique is much simpler and yields better bounds in many cases than the _trace method_ -- which was the sole technique for this purpose.
We obtain the first polynomial-time algorithm for exact tensor completion that improves over the bound implied by reduction to matrix completion. The algorithm recovers an unknown 3-tensor with $r$ incoherent, orthogonal components in $mathbb R^n$ from $rcdot tilde O(n^{1.5})$ randomly observed entries of the tensor. This bound improves over the previous best one of $rcdot tilde O(n^{2})$ by reduction to exact matrix completion. Our bound also matches the best known results for the easier problem of approximate tensor completion (Barak & Moitra, 2015). Our algorithm and analysis extends seminal results for exact matrix completion (Candes & Recht, 2009) to the tensor setting via the sum-of-squares method. The main technical challenge is to show that a small number of randomly chosen monomials are enough to construct a degree-3 polynomial with precisely planted orthogonal global optima over the sphere and that this fact can be certified within the sum-of-squares proof system.
We study how well functions over the boolean hypercube of the form $f_k(x)=(|x|-k)(|x|-k-1)$ can be approximated by sums of squares of low-degree polynomials, obtaining good bounds for the case of approximation in $ell_{infty}$-norm as well as in $ell_1$-norm. We describe three complexity-theoretic applications: (1) a proof that the recent breakthrough lower bound of Lee, Raghavendra, and Steurer on the positive semidefinite extension complexity of the correlation and TSP polytopes cannot be improved further by showing better sum-of-squares degree lower bounds on $ell_1$-approximation of $f_k$; (2) a proof that Grigorievs lower bound on the degree of Positivstellensatz refutations for the knapsack problem is optimal, answering an open question from his work; (3) bounds on the query complexity of quantum algorithms whose expected output approximates such functions.
Triangular map is a recent construct in probability theory that allows one to transform any source probability density function to any target density function. Based on triangular maps, we propose a general framework for high-dimensional density estimation, by specifying one-dimensional transformations (equivalently conditional densities) and appropriate conditioner networks. This framework (a) reveals the commonalities and differences of existing autoregressive and flow based methods, (b) allows a unified understanding of the limitations and representation power of these recent approaches and, (c) motivates us to uncover a new Sum-of-Squares (SOS) flow that is interpretable, universal, and easy to train. We perform several synthetic experiments on various density geometries to demonstrate the benefits (and short-comings) of such transformations. SOS flows achieve competitive results in simulations and several real-world datasets.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا