Do you want to publish a course? Click here

On the sum-of-squares degree of symmetric quadratic functions

199   0   0.0 ( 0 )
 Added by Troy Lee
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

We study how well functions over the boolean hypercube of the form $f_k(x)=(|x|-k)(|x|-k-1)$ can be approximated by sums of squares of low-degree polynomials, obtaining good bounds for the case of approximation in $ell_{infty}$-norm as well as in $ell_1$-norm. We describe three complexity-theoretic applications: (1) a proof that the recent breakthrough lower bound of Lee, Raghavendra, and Steurer on the positive semidefinite extension complexity of the correlation and TSP polytopes cannot be improved further by showing better sum-of-squares degree lower bounds on $ell_1$-approximation of $f_k$; (2) a proof that Grigorievs lower bound on the degree of Positivstellensatz refutations for the knapsack problem is optimal, answering an open question from his work; (3) bounds on the query complexity of quantum algorithms whose expected output approximates such functions.



rate research

Read More

The degree-$4$ Sum-of-Squares (SoS) SDP relaxation is a powerful algorithm that captures the best known polynomial time algorithms for a broad range of problems including MaxCut, Sparsest Cut, all MaxCSPs and tensor PCA. Despite being an explicit algorithm with relatively low computational complexity, the limits of degree-$4$ SoS SDP are not well understood. For example, existing integrality gaps do not rule out a $(2-varepsilon)$-algorithm for Vertex Cover or a $(0.878+varepsilon)$-algorithm for MaxCut via degree-$4$ SoS SDPs, each of which would refute the notorious Unique Games Conjecture. We exhibit an explicit mapping from solutions for degree-$2$ Sum-of-Squares SDP (Goemans-Williamson SDP) to solutions for the degree-$4$ Sum-of-Squares SDP relaxation on boolean variables. By virtue of this mapping, one can lift lower bounds for degree-$2$ SoS SDP relaxation to corresponding lower bounds for degree-$4$ SoS SDPs. We use this approach to obtain degree-$4$ SoS SDP lower bounds for MaxCut on random $d$-regular graphs, Sherington-Kirkpatrick model from statistical physics and PSD Grothendieck problem. Our constructions use the idea of pseudocalibration towards candidate SDP vectors, while it was previously only used to produce the candidate matrix which one would show is PSD using much technical work. In addition, we develop a different technique to bound the spectral norms of _graphical matrices_ that arise in the context of SoS SDPs. The technique is much simpler and yields better bounds in many cases than the _trace method_ -- which was the sole technique for this purpose.
We characterize the approximate monomial complexity, sign monomial complexity , and the approximate L 1 norm of symmetric functions in terms of simple combinatorial measures of the functions. Our characterization of the approximate L 1 norm solves the main conjecture in [AFH12]. As an application of the characterization of the sign monomial complexity, we prove a conjecture in [ZS09] and provide a characterization for the unbounded-error communication complexity of symmetric-xor functions.
We study the computational complexity of approximating the 2->q norm of linear operators (defined as ||A||_{2->q} = sup_v ||Av||_q/||v||_2), as well as connections between this question and issues arising in quantum information theory and the study of Khots Unique Games Conjecture (UGC). We show the following: 1. For any constant even integer q>=4, a graph $G$ is a small-set expander if and only if the projector into the span of the top eigenvectors of Gs adjacency matrix has bounded 2->q norm. As a corollary, a good approximation to the 2->q norm will refute the Small-Set Expansion Conjecture--a close variant of the UGC. We also show that such a good approximation can be obtained in exp(n^(2/q)) time, thus obtaining a different proof of the known subexponential algorithm for Small Set Expansion. 2. Constant rounds of the Sum of Squares semidefinite programing hierarchy certify an upper bound on the 2->4 norm of the projector to low-degree polynomials over the Boolean cube, as well certify the unsatisfiability of the noisy cube and short code based instances of Unique Games considered by prior works. This improves on the previous upper bound of exp(poly log n) rounds (for the short code), as well as separates the Sum of Squares/Lasserre hierarchy from weaker hierarchies that were known to require omega(1) rounds. 3. We show reductions between computing the 2->4 norm and computing the injective tensor norm of a tensor, a problem with connections to quantum information theory. Three corollaries are: (i) the 2->4 norm is NP-hard to approximate to precision inverse-polynomial in the dimension, (ii) the 2->4 norm does not have a good approximation (in the sense above) unless 3-SAT can be solved in time exp(sqrt(n) polylog(n)), and (iii) known algorithms for the quantum separability problem imply a non-trivial additive approximation for the 2->4 norm.
We prove that for every $epsilon>0$ and predicate $P:{0,1}^krightarrow {0,1}$ that supports a pairwise independent distribution, there exists an instance $mathcal{I}$ of the $mathsf{Max}P$ constraint satisfaction problem on $n$ variables such that no assignment can satisfy more than a $tfrac{|P^{-1}(1)|}{2^k}+epsilon$ fraction of $mathcal{I}$s constraints but the degree $Omega(n)$ Sum of Squares semidefinite programming hierarchy cannot certify that $mathcal{I}$ is unsatisfiable. Similar results were previously only known for weaker hierarchies.
We prove that with high probability over the choice of a random graph $G$ from the ErdH{o}s-Renyi distribution $G(n,1/2)$, a natural $n^{O(varepsilon^2 log n)}$-time, degree $O(varepsilon^2 log n)$ sum-of-squares semidefinite program cannot refute the existence of a valid $k$-coloring of $G$ for $k = n^{1/2 +varepsilon}$. Our result implies that the refutation guarantee of the basic semidefinite program (a close variant of the Lovasz theta function) cannot be appreciably improved by a natural $o(log n)$-degree sum-of-squares strengthening, and this is tight up to a $n^{o(1)}$ slack in $k$. To the best of our knowledge, this is the first lower bound for coloring $G(n,1/2)$ for even a single round strengthening of the basic SDP in any SDP hierarchy. Our proof relies on a new variant of instance-preserving non-pointwise complete reduction within SoS from coloring a graph to finding large independent sets in it. Our proof is (perhaps surprisingly) short, simple and does not require complicated spectral norm bounds on random matrices with dependent entries that have been otherwise necessary in the proofs of many similar results [BHK+16, HKP+17, KB19, GJJ+20, MRX20]. Our result formally holds for a constraint system where vertices are allowed to belong to multiple color classes; we leave the extension to the formally stronger formulation of coloring, where vertices must belong to unique colors classes, as an outstanding open problem.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا