Do you want to publish a course? Click here

Observation of Nonlinear Dynamics in an Optical Levitation System

81   0   0.0 ( 0 )
 Added by Jinyong Ma
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Optical levitation of mechanical oscillators has been suggested as a promising way to decouple the environmental noise and increase the mechanical quality factor. Here, we investigate the dynamics of a free-standing mirror acting as the top reflector of a vertical optical cavity, designed as a testbed for a tripod cavity optical levitation setup. To reach the regime of levitation for a milligram-scale mirror, the optical intensity of the intracavity optical field approaches 3 MW cm$^{-2}$. We identify three distinct optomechanical effects: excitation of acoustic vibrations, expansion due to photothermal absorption, and partial lift-off of the mirror due to radiation pressure force. These effects are intercoupled via the intracavity optical field and induce complex system dynamics inclusive of high-order sideband generation, optical bistability, parametric amplification, and the optical spring effect. We modify the response of the mirror with active feedback control to improve the overall stability of the system.

rate research

Read More

The ability to create dynamic, tailored optical potentials has become important across fields ranging from biology to quantum science. We demonstrate a method for the creation of arbitrary optical tweezer potentials using the broadband spectral profile of a superluminescent diode combined with the chromatic aberration of a lens. A tunable filter, typically used for ultra-fast laser pulse shaping, allows us to manipulate the broad spectral profile and therefore the optical tweezer potentials formed by focusing of this light. We characterize these potentials by measuring the Brownian motion of levitated nanoparticles in vacuum and, also demonstrate interferometric detection and feedback cooling of the particle,s motion. This simple and cost-effective technique will enable a wide range of applications and allow rapid modulation of the optical potential landscape in excess of MHz frequencies.
Levitated nanodiamonds containing nitrogen vacancy centres in high vacuum are a potential test bed for numerous phenomena in fundamental physics. However, experiments so far have been limited to low vacuum due to heating arising from optical absorption of the trapping laser. We show that milling pure diamond creates nanodiamonds that do not heat up as the optical intensity is raised above 700 GW/m$^2$ below 5 mbar of pressure. This advance now means that the level of attainable vacuum for nanodiamonds in optical dipole traps is no longer temperature limited.
106 - Kunhong Shen , Yao Duan , Peng Ju 2021
Optical levitation of dielectric particles in vacuum is a powerful technique for precision measurements, testing fundamental physics, and quantum information science. Conventional optical tweezers require bulky optical components for trapping and detection. Here we design and fabricate an ultrathin dielectric metalens with a high numerical aperture of 0.88 at 1064 nm in vacuum. It consists of 500 nm-thick silicon nano-antennas, which are compatible with ultrahigh vacuum. We demonstrate optical levitation of nanoparticles in vacuum with a single metalens. The trapping frequency can be tuned by changing the laser power and polarization. We also transfer a levitated nanoparticle between two separated optical tweezers. Optical levitation with an ultrathin metalens in vacuum provides opportunities for a wide range of applications including on-chip sensing. Such metalenses will also be useful for trapping ultacold atoms and molecules.
141 - Yosuke Minowa , Ryoichi Kawai , 2014
We demonstrate the optical levitation or trapping in helium gas of a single quantum dot (QD) within a liquid droplet. Bright single photon emission from the levitated QD in the droplet was observed for more than 200 s. The observed photon count rates are consistent with the value theoretically estimated from the two-photon-action cross section. This paper presents the realization of an optically levitated solid-state quantum emitter. This paper was published in Optics Letters and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: https://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-40-6-906. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law.
Optically-induced magnetic resonances in non-magnetic media have unlocked magnetic light-matter interactions and led to new technologies in many research fields. Previous proposals for the levitation of nanoscale particles without structured illumination have worked on the basis of epsilon-near-zero surfaces or anisotropic materials but these carry with them significant fabrication difficulties. We report the optical levitation of a magnetic dipole over a wide range of realistic materials, including bulk metals, thereby relieving these difficulties. The repulsion is independent of surface losses and we propose an experiment to detect this force which consists of a core-shell nanoparticle, exhibiting a magnetic resonance, in close proximity to a gold substrate under plane wave illumination. We anticipate the use of this phenomenon in new nanomechanical devices.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا