Do you want to publish a course? Click here

Optical levitation using broadband light

66   0   0.0 ( 0 )
 Added by Anishur Rahman
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The ability to create dynamic, tailored optical potentials has become important across fields ranging from biology to quantum science. We demonstrate a method for the creation of arbitrary optical tweezer potentials using the broadband spectral profile of a superluminescent diode combined with the chromatic aberration of a lens. A tunable filter, typically used for ultra-fast laser pulse shaping, allows us to manipulate the broad spectral profile and therefore the optical tweezer potentials formed by focusing of this light. We characterize these potentials by measuring the Brownian motion of levitated nanoparticles in vacuum and, also demonstrate interferometric detection and feedback cooling of the particle,s motion. This simple and cost-effective technique will enable a wide range of applications and allow rapid modulation of the optical potential landscape in excess of MHz frequencies.



rate research

Read More

Optically-induced magnetic resonances in non-magnetic media have unlocked magnetic light-matter interactions and led to new technologies in many research fields. Previous proposals for the levitation of nanoscale particles without structured illumination have worked on the basis of epsilon-near-zero surfaces or anisotropic materials but these carry with them significant fabrication difficulties. We report the optical levitation of a magnetic dipole over a wide range of realistic materials, including bulk metals, thereby relieving these difficulties. The repulsion is independent of surface losses and we propose an experiment to detect this force which consists of a core-shell nanoparticle, exhibiting a magnetic resonance, in close proximity to a gold substrate under plane wave illumination. We anticipate the use of this phenomenon in new nanomechanical devices.
370 - C. Liu , A. Di Falco , D. Molinari 2012
Chaos is a phenomenon that occurs in many aspects of contemporary science. In classical dynamics, chaos is defined as a hypersensitivity to initial conditions. The presence of chaos is often unwanted, as it introduces unpredictability, which makes it difficult to predict or explain experimental results. Conversely, we demonstrate here how chaos can be used to enhance the ability of an optical resonator to store energy. We combine analytic theory with ab-initio simulations and experiments in photonic crystal resonators to show that a chaotic resonator can store six times more energy than its classical counterpart of the same volume. We explain the observed increase with the equipartition of energy among all degrees of freedom of the chaotic resonator, i.e. the cavity modes, which is evident from the convergence of their lifetime towards a single value. A compelling illustration of the theory is provided by demonstrating enhanced absorption in deformed polystyrene microspheres.
Compact and robust cold atom sources are increasingly important for quantum research, especially for transferring cutting-edge quantum science into practical applications. In this letter, we report on a novel scheme that utilizes a metasurface optical chip to replace the conventional bulky optical elements used to produce a cold atomic ensemble with a single incident laser beam, which is split by the metasurface into multiple beams of the desired polarization states. Atom numbers $~10^7$ and temperatures (about 35 ${mu}$K) of relevance to quantum sensing are achieved in a compact and robust fashion. Our work highlights the substantial progress towards fully integrated cold atom quantum devices by exploiting metasurface optical chips, which may have great potential in quantum sensing, quantum computing and other areas.
Three-color coherent anti-Stokes Raman scattering represents non-degenerate four wave mixing process that includes both a non-resonant and resonant processes, the contributions of which depend on how the molecular vibrational modes are being excited by the input laser pulses. Non-degenerate four wave mixing processes are complex and understanding these processes requires rigorous data analytical tools, which still lack in this research field. In this work, we introduce one- and two-dimensional intensity-intensity correlation functions in terms of a new variable (e.g., probe pulse delay) and new perturbation parameter (e.g., probe pulse linewidth). In particular, diagonal projections are defined here as a tool to reduce both synchronous and asynchronous two-dimensional correlation spectroscopy analyses down to one-dimensional analysis, revealing valuable analytical information. Detailed analyses using the all Gaussian coherent Raman scattering closed-form solutions and the representative experimental data for resonant and non-resonant processes are presented and compared. This intensity-intensity correlation analytical tool holds a promising potential in resolving and visualizing resonant versus non-resonant four wave mixing processes for quantitative label-free species-specific nonlinear spectroscopy and microscopy.
156 - Yosuke Minowa , Ryoichi Kawai , 2014
We demonstrate the optical levitation or trapping in helium gas of a single quantum dot (QD) within a liquid droplet. Bright single photon emission from the levitated QD in the droplet was observed for more than 200 s. The observed photon count rates are consistent with the value theoretically estimated from the two-photon-action cross section. This paper presents the realization of an optically levitated solid-state quantum emitter. This paper was published in Optics Letters and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: https://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-40-6-906. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا