No Arabic abstract
Although quantum channels underlie the dynamics of quantum states, maps which are not physical channels -- that is, not completely positive -- can often be encountered in settings such as entanglement detection, non-Markovian quantum dynamics, or error mitigation. We introduce an operational approach to the quantitative study of the non-physicality of linear maps based on different ways to approximate a given linear map with quantum channels. Our first measure directly quantifies the cost of simulating a given map using physically implementable quantum channels, shifting the difficulty in simulating unphysical dynamics onto the task of simulating linear combinations of quantum states. Our second measure benchmarks the quantitative advantages that a non-completely-positive map can provide in discrimination-based quantum games. Notably, we show that for any trace-preserving map, the quantities both reduce to a fundamental distance measure: the diamond norm, thus endowing this norm with new operational meanings in the characterisation of linear maps. We discuss applications of our results to structural physical approximations of positive maps, quantification of non-Markovianity, and bounding the cost of error mitigation.
Although entanglement is necessary for observing nonlocality in a Bell experiment, there are entangled states which can never be used to demonstrate nonlocal correlations. In a seminal paper [PRL 108, 200401 (2012)] F. Buscemi extended the standard Bell experiment by allowing Alice and Bob to be asked quantum, instead of classical, questions. This gives rise to a broader notion of nonlocality, one which can be observed for every entangled state. In this work we study a resource theory of this type of nonlocality referred to as Buscemi nonlocality. We propose a geometric quantifier measuring the ability of a given state and local measurements to produce Buscemi nonlocal correlations and establish its operational significance. In particular, we show that any distributed measurement which can demonstrate Buscemi nonlocal correlations provides strictly better performance than any distributed measurement which does not use entanglement in the task of distributed state discrimination. We also show that the maximal amount of Buscemi nonlocality that can be generated using a given state is precisely equal to its entanglement content. Finally, we prove a quantitative relationship between: Buscemi nonlocality, the ability to perform nonclassical teleportation, and entanglement. Using this relationship we propose new discrimination tasks for which nonclassical teleportation and entanglement lead to an advantage over their classical counterparts.
In this work, we investigate the joint measurability of quantum effects and connect it to the study of free spectrahedra. Free spectrahedra typically arise as matricial relaxations of linear matrix inequalities. An example of a free spectrahedron is the matrix diamond, which is a matricial relaxation of the $ell_1$-ball. We find that joint measurability of binary POVMs is equivalent to the inclusion of the matrix diamond into the free spectrahedron defined by the effects under study. This connection allows us to use results about inclusion constants from free spectrahedra to quantify the degree of incompatibility of quantum measurements. In particular, we completely characterize the case in which the dimension is exponential in the number of measurements. Conversely, we use techniques from quantum information theory to obtain new results on spectrahedral inclusion for the matrix diamond.
Recently, various non-classical properties of quantum states and channels have been characterized through an advantage they provide in specific quantum information tasks over their classical counterparts. Such advantage can be typically proven to be quantitative, in that larger amounts of quantum resources lead to better performance in the corresponding tasks. So far, these characterizations have been established only in the finite-dimensional setting. In this manuscript, we present a technique for extending the known results to the infinite-dimensional regime. The technique relies on approximating infinite-dimensional resource measures by their finite-dimensional counterparts. We give a sufficient condition for the approximation procedure to be tight, i.e. to match with established infinite-dimensional resource quantifiers, and another sufficient condition for the procedure to match with relevant extensions of these quantifiers. We show that various continuous variable quantum resources fall under these conditions, hence, giving them an operational interpretation through the advantage they can provide in so-called quantum games. Finally, we extend the interpretation to the max relative entropy in the infinite-dimensional setting.
We prove that for any infinite-dimensional quantum channel the entropic disturbance (defined as difference between the $chi$-quantity of a generalized ensemble and that of the image of the ensemble under the channel) is lower semicontinuous on the natural set of its definition. We establish a number of useful corollaries of this property, in particular, we prove the continuity of the output $chitextrm{-}$quantity and the existence of $chi$-optimal ensemble for any quantum channel under the energy-type input constraint.
We formulate the Frobenius-norm-based measures for quantum coherence and asymmetry respectively. In contrast to the resource theory of coherence and asymmetry, we construct a natural measure of quantum coherence inspired from optical coherence theory while the group theoretical approach is employed to quantify the asymmetry of quantum states. Besides their simple structures and explicit physical meanings, we observe that these quantities are intimately related to the purity (or linear entropy) of the corresponding quantum states. Remarkably, we demonstrate that the proposed coherence quantifier is not only a measure of mixedness, but also an intrinsic (basis-independent) quantification of quantum coherence contained in quantum states, which can also be viewed as a normalized version of Brukner-Zeilinger invariant information. In our context, the asymmetry of N-qubit quantum systems is considered under local independent and collective SU(2) transformations. Intriguingly, it is illustrated that the collective effect has a significant impact on the asymmetry measure, and quantum correlation between subsystems plays a non-negligible role in this circumstance.