No Arabic abstract
Recently, [JHEP 20 131 (2020)] obtained (a similar, scaled version of) the ($a,b$)-phase diagram derived from the Kazakov--Zinn-Justin solution of the Hermitian two-matrix model with interactions [mathrm{Tr,}Big{frac{a}{4} (A^4+B^4)+frac{b}{2} ABABBig},,] starting from Functional Renormalization. We comment on something unexpected: the phase diagram of [JHEP 20 131 (2020)] is based on a $beta_b$-function that does not have the one-loop structure of the Wetterich-Morris Equation. This raises the question of how to reproduce the phase diagram from a set of $beta$-functions that is, in its totality, consistent with Functional Renormalization. A non-minimalist, yet simple truncation that could lead to the phase diagram is provided. Additionally, we identify the ensemble for which the result of op. cit. would be entirely correct.
We investigate the massive Schwinger model in $d = 1 + 1$ dimensions using bosonization and the non-perturbative functional renormalization group. In agreement with previous studies we find that the phase transition, driven by a change of the ratio $m/e$ between the mass and the charge of the fermions, belongs to the two-dimensional Ising universality class. The temperature and vacuum angle dependence of various physical quantities (chiral density, electric field, entropy density) are also determined and agree with results obtained from density matrix renormalization group studies. Screening of fractional charges and deconfinement occur only at infinite temperature.
In high multiplicity nucleus-nucleus collisions baryon-antibaryon annihilation and regeneration occur during the final hadronic expansion phase, thus distorting the initial equilibrium multiplicity ratios. We quantify the modifications employing the hybrid UrQMD transport model and apply them to the grand canonical partition functions of the Statistical Hadronization Model(SHM). We analyze minimum bias and central Pb+Pb collision data at SPS and LHC energy. We explain the Pion to Proton ratio puzzle. We also reproduce the deuteron to proton ratio at LHC energy by the SHM, and by UrQMD after attaching a phase space coalescence process. We discuss the resulting (T,$mu_{B}$) diagram.
We study the renormalization group flow of $mathbb{Z}_2$-invariant supersymmetric and non-supersymmetric scalar models in the local potential approximation using functional renormalization group methods. We focus our attention to the fixed points of the renormalization group flow of these models, which emerge as scaling solutions. In two dimensions these solutions are interpreted as the minimal (supersymmetric) models of conformal field theory, while in three dimension they are manifestations of the Wilson-Fisher universality class and its supersymmetric counterpart. We also study the analytically continued flow in fractal dimensions between 2 and 4 and determine the critical dimensions for which irrelevant operators become relevant and change the universality class of the scaling solution. We also include novel analytic and numerical investigations of the properties that determine the occurrence of the scaling solutions within the method. For each solution we offer new techniques to compute the spectrum of the deformations and obtain the corresponding critical exponents.
Two-dimensional density-matrix renormalization group method is employed to examine the ground state phase diagram of the Hubbard model on the triangular lattice at half filling. The calculation reveals two discontinuities in the double occupancy with increasing the repulsive Hubbard interaction U at Uc1 = 7.55 t and Uc2 = 9.65 t (t being the hopping integral), indicating that there are three phases separated by first order transitions. The absence of any singularity in physical quantities for 0 < U < Uc1 implies that this phase corresponds to a metallic phase. The local spin density induced by an applied pinning magnetic field for U > Uc2 exhibits a three sublattice feature, which is compatible with the Neel ordered state realized in the strong coupling limit. For Uc1 < U < Uc2, a response to the applied pinning magnetic field is comparable to that in the metallic phase but a relatively large spin correlation length is found with neither valence bond nor chiral magnetic order, suggesting a paramagnetic nature which resembles gapless spin liquid. The calculation also finds that the pair- ing correlation function monotonically decreases with increasing U and thus the superconductivity is unlikely in the intermediate phase.
Techniques based on $n$-particle irreducible effective actions can be used to study systems where perturbation theory does not apply. The main advantage, relative to other non-perturbative continuum methods, is that the hierarchy of integral equations that must be solved truncates at the level of the action, and no additional approximations are needed. The main problem with the method is renormalization, which until now could only be done at the lowest ($n$=2) level. In this paper we show how to obtain renormalized results from an $n$-particle irreducible effective action at any order. We consider a symmetric scalar theory with quartic coupling in four dimensions and show that the 4 loop 4-particle-irreducible calculation can be renormalized using a renormalization group method. The calculation involves one bare mass and one bare coupling constant which are introduced at the level of the Lagrangian, and cannot be done using any known method by introducing counterterms.