Do you want to publish a course? Click here

Scaling and superscaling solutions from the functional renormalization group

116   0   0.0 ( 0 )
 Added by Omar Zanusso
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the renormalization group flow of $mathbb{Z}_2$-invariant supersymmetric and non-supersymmetric scalar models in the local potential approximation using functional renormalization group methods. We focus our attention to the fixed points of the renormalization group flow of these models, which emerge as scaling solutions. In two dimensions these solutions are interpreted as the minimal (supersymmetric) models of conformal field theory, while in three dimension they are manifestations of the Wilson-Fisher universality class and its supersymmetric counterpart. We also study the analytically continued flow in fractal dimensions between 2 and 4 and determine the critical dimensions for which irrelevant operators become relevant and change the universality class of the scaling solution. We also include novel analytic and numerical investigations of the properties that determine the occurrence of the scaling solutions within the method. For each solution we offer new techniques to compute the spectrum of the deformations and obtain the corresponding critical exponents.



rate research

Read More

102 - N. Defenu , P. Mati , I. G. Marian 2014
We study the occurrence of spontaneous symmetry breaking (SSB) for O(N) models using functional renormalization group techniques. We show that even the local potential approximation (LPA) when treated exactly is sufficient to give qualitatively correct results for systems with continuous symmetry, in agreement with the Mermin-Wagner theorem and its extension to systems with fractional dimensions. For general N (including the Ising model N=1) we study the solutions of the LPA equations for various truncations around the zero field using a finite number of terms (and different regulators), showing that SSB always occurs even where it should not. The SSB is signalled by Wilson-Fisher fixed points which for any truncation are shown to stay on the line defined by vanishing mass beta functions.
176 - J. Berges , G. Hoffmeister 2008
Nonthermal fixed points represent basic properties of quantum field theories, in addition to vacuum or thermal equilibrium fixed points. The functional renormalization group on a closed real-time path provides a common framework for their description. For the example of an O(N) symmetric scalar theory it reveals a hierarchy of fixed point solutions, with increasing complexity from vacuum and thermal equilibrium to nonequilibrium.
Quantum Renyi relative entropies provide a one-parameter family of distances between density matrices, which generalizes the relative entropy and the fidelity. We study these measures for renormalization group flows in quantum field theory. We derive explicit expressions in free field theory based on the real time approach. Using monotonicity properties, we obtain new inequalities that need to be satisfied by consistent renormalization group trajectories in field theory. These inequalities play the role of a second law of thermodynamics, in the context of renormalization group flows. Finally, we apply these results to a tractable Kondo model, where we evaluate the Renyi relative entropies explicitly. An outcome of this is that Andersons orthogonality catastrophe can be avoided by working on a Cauchy surface that approaches the light-cone.
179 - N. Defenu , A. Codello 2017
Scalar field theories with $mathbb{Z}_{2}$-symmetry are the traditional playground of critical phenomena. In this work these models are studied using functional renormalization group (FRG) equations at order $partial^2$ of the derivative expansion and, differently from previous approaches, the spike plot technique is employed to find the relative scaling solutions in two and three dimensions. The anomalous dimension of the first few universality classes in $d=2$ is given and the phase structure predicted by conformal field theory is recovered (without the imposition of conformal invariance), while in $d=3$ a refined view of the standard Wilson-Fisher fixed point is found. Our study enlightens the strength of shooting techniques in studying FRG equations, suggesting them as candidates to investigate strongly non-perturbative theories even in more complex cases.
We aim to optimize the functional form of the compactly supported smooth (CSS) regulator within the functional renormalization group (RG), in the framework of bosonized two-dimensional Quantum Electrodynamics (QED_2) and of the three-dimensional O(N=1) scalar field theory in the local potential approximation (LPA). The principle of minimal sensitivity (PMS) is used for the optimization of the CSS regulator, recovering all the major types of regulators in appropriate limits. Within the investigated class of functional forms, a thorough investigation of the CSS regulator, optimized with two different normalizations within the PMS method, confirms that the functional form of a regulator first proposed by Litim is optimal within the LPA. However, Litims exact form leads to a kink in the regulator function. A form of the CSS regulator, numerically close to Litims limit while maintaining infinite differentiability, remains compatible with the gradient expansion to all orders. A smooth analytic behaviour of the regulator is ensured by a small, but finite value of the exponential fall-off parameter in the CSS regulator. Consequently, a compactly supported regulator, in a parameter regime close to Litims optimized form, but regularized with an exponential factor, appears to have favorable properties and could be used to address the scheme dependence of the functional renormalization group, at least within the the approximations employed in the studies reported here.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا