Do you want to publish a course? Click here

LAXPC instrument onboard AstroSat: Five exciting years of new scientific results specially on X-ray Binaries

60   0   0.0 ( 0 )
 Added by Jayashree Roy Dr
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

With its large effective area at hard X-rays, high time resolution and having co-aligned other instruments, AstroSat/LAXPC was designed to usher in a new era in rapid variability studies and wide spectral band measurements of the X-ray binaries. Over the last five years, the instrument has successfully achieved to a significant extent these Science goals. In the coming years, it is poised to make more important discoveries. This paper highlights the primary achievements of AstroSat/LAXPC in unraveling the behavior of black hole and neutron star systems and discusses the exciting possibility of the instruments contribution to future science.



rate research

Read More

Large Area X-ray Proportional Counter (LAXPC) is one of the major AstroSat payloads. LAXPC instrument will provide high time resolution X-ray observations in 3 to 80 keV energy band with moderate energy resolution. A cluster of three co-aligned identical LAXPC detectors is used in AstroSat to provide large collection area of more than 6000 cm2 . The large detection volume (15 cm depth) filled with xenon gas at about 2 atmosphere pressure, results in detection efficiency greater than 50%, above 30 keV. With its broad energy range and fine time resolution (10 microsecond), LAXPC instrument is well suited for timing and spectral studies of a wide variety of known and transient X-ray sources in the sky. We have done extensive calibration of all LAXPC detectors using radioactive sources as well as GEANT4 simulation of LAXPC detectors. We describe in brief some of the results obtained during the payload verification phase along with LXAPC capabilities.
Large Area X-ray Propositional Counter (LAXPC) instrument on AstroSat is aimed at providing high time resolution X-ray observations in 3 to 80 keV energy band with moderate energy resolution. To achieve large collecting area, a cluster of three co-aligned identical LAXPC detectors, is used to realize an effective area in access of about 6000 cm2 at 15 keV. The large detection volume of the LAXPC detectors, filled with xenon gas at about 2 atmosphere pressure, results in detection efficiency greater than 50%, above 30 keV. In this article, we present salient features of the LAXPC detectors, their testing and characterization in the laboratory prior to launch and calibration in the orbit. Some preliminary results on timing and spectral characteristics of a few X-ray binaries and other type of sources, are briefly discussed to demonstrate that the LAXPC instrument is performing as planned in the orbit.
The AstroSat satellite is designed to make multi-waveband observations of astronomical sources and the Cadmium Zinc Telluride Imager (CZTI) instrument of AstroSat covers the hard X-ray band. CZTI has a large area position sensitive hard X-ray detector equipped with a Coded Aperture Mask, thus enabling simultaneous background measurement. Ability to record simultaneous detection of ionizing interactions in multiple detector elements is a special feature of the instrument and this is exploited to provide polarization information in the 100 - 380 keV region. CZTI provides sensitive spectroscopic measurements in the 20 - 100 keV region, and acts as an all sky hard X-ray monitor and polarimeter above 100 keV. During the first year of operation, CZTI has recorded several gamma-ray bursts, measured the phase resolved hard X-ray polarization of the Crab pulsar, and the hard X-ray spectra of many bright Galactic X-ray binaries. The excellent timing capability of the instrument has been demonstrated with simultaneous observation of the Crab pulsar with radio telescopes like GMRT and Ooty radio telescope.
In this paper, we present the first results of spectral and timing properties of the atoll source 4U 1705-44 using $sim$ 100 ks data obtained with Large Area X-ray Proportional Counter (LAXPC) onboard {it AstroSat}. The source was in the high-soft state during our observations and traced out a {it banana track} in the Hardness Intensity Diagram (HID). We study {bf the} evolution of the Power Density Spectra (PDS) and the energy spectra along the HID. PDS show presence of a broad Lorentzian feature (Peaked Noise or PN) centered at $1-13$ Hz and a very low frequency noise (VLFN). The energy spectra can be described by sum of a thermal Comptonized component, a power-law and a broad iron line. The hard tail seen in the energy spectra is variable and contribute $4-30$% of the total flux. The iron line seen in this source is broad (FWHM $sim$ 2 keV) and strong (EW $sim$ $369-512$ eV). Only relativistic smearing in the accretion disc can not explain the origin of this feature and requires other mechanism such as broadening by Comptonization process in the external part of the `Comptonized Corona. A subtle and systematic evolution of the spectral parameters (optical depth, electron temperature etc.) is seen as the source moves along the HID. We study the correlation between frequency of the PN and the spectral parameters. PN frequency seems to be correlated with the strength of the corona. We discuss the implication of the results in the paper.
443 - Rim Dib , Victoria M. Kaspi 2014
We present a summary of the long-term evolution of various properties of the five non-transient Anomalous X-ray Pulsars (AXPs) 1E 1841-045, RXS J170849.0-400910, 1E 2259+586, 4U 0142+61, and 1E 1048.1-5937, regularly monitored with RXTE from 1996 to 2012. We focus on three properties of these sources: the evolution of the timing, pulsed flux, and pulse profile. We report several new timing anomalies and radiative events, including a putative anti-glitch seen in 1E 2259+586 in 2009, and a second epoch of very large spin-down rate fluctuations in 1E 1048.1-5937 following a large flux outburst. We compile the properties of the 11 glitches and 4 glitch candidates observed from these 5 AXPs between 1996 and 2012. Overall, these monitoring observations reveal several apparent patterns in the behavior of this sample of AXPs: large radiative changes in AXPs (including long-lived flux enhancements, short bursts, and pulse profile changes) are rare, occurring typically only every few years per source; large radiative changes are almost always accompanied by some form of timing anomaly, usually a spin-up glitch; only 20-30% of timing anomalies are accompanied by any form of radiative change. We find that AXP radiative behavior at the times of radiatively loud glitches is sufficiently similar to suggest common physical origins. The similarity in glitch properties when comparing radiatively loud and radiatively silent glitches in AXPs suggests a common physical origin in the stellar interior. Finally, the overall similarity of AXP and radio pulsar glitches suggests a common physical origin for both phenomena.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا