No Arabic abstract
Post-reionisation 21cm intensity mapping experiments target the spectral line of neutral hydrogen (HI) resident in dark matter haloes. According to the halo model, these discrete haloes trace the continuous dark matter density field down to a certain scale, which is dependent on the halo physical size. The halo physical size defines an exclusion region which leaves imprints on the statistical properties of HI. We show how the effect of exclusion due to the finite halo size impacts the HI power spectrum, with the physical boundary of the host halo given by the splashback radius. Most importantly, we show that the white noise-like feature that appears in the zero-momentum limit of the power spectrum is exactly cancelled when the finite halo size is taken into consideration. This cancellation in fact applies to all tracers of dark matter density field, including galaxies. Furthermore, we show that the exclusion due to finite halo size leads to a sub-Poissonian noise signature on large scales, consistent with the results from N-body simulations
We investigate the impact of feedback - from supernovae (SNe), active galactic nuclei (AGN) and a photo-ionizing background at high redshifts - on the neutral atomic hydrogen (HI) mass function, the $b_{rm J}$ band luminosity function, and the spatial clustering of these galaxies at $z$=0. We use a version of the semi-analytical galaxy formation model GALFORM that calculates self-consistently the amount of HI in a galaxy as a function of cosmic time and links its star formation rate to its mass of molecular hydrogen (H$_2$). We find that a systematic increase or decrease in the strength of SNe feedback leads to a systematic decrease or increase in the amplitudes of the luminosity and HI mass functions, but has little influence on their overall shapes. Varying the strength of AGN feedback influences only the numbers of the brightest or most HI massive galaxies, while the impact of varying the strength of photo-ionization feedback is restricted to changing the numbers of the faintest or least HI massive galaxies.Our results suggest that the HI mass function is a more sensitive probe of the consequences of cosmological reionization for galaxy formation than the luminosity function. We find that increasing the strength of any of the modes of feedback acts to weaken the clustering strength of galaxies, regardless of their HI-richness. In contrast, weaker AGN feedback has little effect on the clustering strength whereas weaker SNe feedback increases the clustering strength of HI-poor galaxies more strongly than HI-rich galaxies. These results indicate that forthcoming HI surveys on next generation radio telescopes such as the Square Kilometre Array and its pathfinders will be exploited most fruitfully as part of multiwavelength survey campaigns.
We describe a combined halo model to constrain the distribution of neutral hydrogen (HI) in the post-reionization universe. We combine constraints from the various probes of HI at different redshifts: the low-redshift 21-cm emission line surveys, intensity mapping experiments at intermediate redshifts, and the Damped Lyman-Alpha (DLA) observations at higher redshifts. We use a Markov Chain Monte Carlo (MCMC) approach to combine the observations and place constraints on the free parameters in the model. Our best-fit model involves a relation between neutral hydrogen mass $M_{rm HI}$ and halo mass $M$ with a non-unit slope, and an upper and a lower cutoff. We find that the model fits all the observables but leads to an underprediction of the bias parameter of DLAs at $z sim 2.3$. We also find indications of a possible tension between the HI column density distribution and the mass function of HI-selected galaxies at $zsim 0$. We provide the central values of the parameters of the best-fit model so derived. We also provide a fitting form for the derived evolution of the concentration parameter of HI in dark matter haloes, and discuss the implications for the redshift evolution of the HI-halo mass relation.
We investigate experimentally the spatial distributions of heavy and neutrally buoyant particles of finite size in a fully turbulent flow. As their Stokes number (i.e. ratio of the particle viscous relaxation time to a typical flow time scale) is close to 1, one may expect both classes of particles to aggregate in specific flow regions. This is not observed. Using a Voronoi analysis we show that neutrally buoyant particles sample turbulence homogeneously, whereas heavy particles do cluster. One implication for the understanding and modeling of particle laden flows, is that the Stokes number cannot be the sole key parameter as soon as the dynamics of finite-size objects is considered.
Our work is concerned with the case of the solar molecule CN which presents conspicuous profiles of scattering polarization. We start by calculating accurate PES for the singlet and triplet electronic ground states in order to characterize the collisions between the CN molecule in its $X ; ^2Sigma$ state and the hydrogen in its ground state $^2S$. The PES are included in the Schroodinger equation to obtain the scattering matrix and the probabilities of collisions. Depolarizing collisional rate coefficients are computed in the framework of the infinite order sudden approximation for temperatures ranging from $T= 2000$ K to $T= 15000$ K. Interpretation of the results and comparison between singlet and triplet collisional rate coefficients are detailed. We show that, for typical photospheric hydrogen density ($n_{H} = 10^{15}-10^{16}$ cm$^{-3}$), the $X ; ^2Sigma$ state of CN is partially or completely depolarized by isotropic collisions.
The first generation of redshifted 21 cm detection experiments, carried out with arrays like LOFAR, MWA and GMRT, will have a very low signal-to-noise ratio per resolution element (sim 0.2). In addition, whereas the variance of the cosmological signal decreases on scales larger than the typical size of ionization bubbles, the variance of the formidable galactic foregrounds increases, making it hard to disentangle the two on such large scales. The poor sensitivity on small scales on the one hand, and the foregrounds effect on large scales on the other hand, make direct imaging of the Epoch of Reionization of the Universe very difficult, and detection of the signal therefore is expected to be statistical.Despite these hurdles, in this paper we argue that for many reionization scenarios low resolution images could be obtained from the expected data. This is because at the later stages of the process one still finds very large pockets of neutral regions in the IGM, reflecting the clustering of the large-scale structure, which stays strong up to scales of sim 120 comoving Mpc/h (sim 1 degree). The coherence of the emission on those scales allows us to reach sufficient S/N (sim 3) so as to obtain reionization 21 cm images. Such images will be extremely valuable for answering many cosmological questions but above all they will be a very powerful tool to test our control of the systematics in the data. The existence of this typical scale (sim 120 comoving Mpc/h) also argues for designing future EoR experiments, e.g., with SKA, with a field of view of at least 4 degree.