Do you want to publish a course? Click here

On the role of feedback in shaping the cosmic abundance and clustering of neutral atomic hydrogen in galaxies

135   0   0.0 ( 0 )
 Added by Han-Seek Kim
 Publication date 2012
  fields Physics
and research's language is English
 Authors Han-Seek Kim




Ask ChatGPT about the research

We investigate the impact of feedback - from supernovae (SNe), active galactic nuclei (AGN) and a photo-ionizing background at high redshifts - on the neutral atomic hydrogen (HI) mass function, the $b_{rm J}$ band luminosity function, and the spatial clustering of these galaxies at $z$=0. We use a version of the semi-analytical galaxy formation model GALFORM that calculates self-consistently the amount of HI in a galaxy as a function of cosmic time and links its star formation rate to its mass of molecular hydrogen (H$_2$). We find that a systematic increase or decrease in the strength of SNe feedback leads to a systematic decrease or increase in the amplitudes of the luminosity and HI mass functions, but has little influence on their overall shapes. Varying the strength of AGN feedback influences only the numbers of the brightest or most HI massive galaxies, while the impact of varying the strength of photo-ionization feedback is restricted to changing the numbers of the faintest or least HI massive galaxies.Our results suggest that the HI mass function is a more sensitive probe of the consequences of cosmological reionization for galaxy formation than the luminosity function. We find that increasing the strength of any of the modes of feedback acts to weaken the clustering strength of galaxies, regardless of their HI-richness. In contrast, weaker AGN feedback has little effect on the clustering strength whereas weaker SNe feedback increases the clustering strength of HI-poor galaxies more strongly than HI-rich galaxies. These results indicate that forthcoming HI surveys on next generation radio telescopes such as the Square Kilometre Array and its pathfinders will be exploited most fruitfully as part of multiwavelength survey campaigns.



rate research

Read More

Post-reionisation 21cm intensity mapping experiments target the spectral line of neutral hydrogen (HI) resident in dark matter haloes. According to the halo model, these discrete haloes trace the continuous dark matter density field down to a certain scale, which is dependent on the halo physical size. The halo physical size defines an exclusion region which leaves imprints on the statistical properties of HI. We show how the effect of exclusion due to the finite halo size impacts the HI power spectrum, with the physical boundary of the host halo given by the splashback radius. Most importantly, we show that the white noise-like feature that appears in the zero-momentum limit of the power spectrum is exactly cancelled when the finite halo size is taken into consideration. This cancellation in fact applies to all tracers of dark matter density field, including galaxies. Furthermore, we show that the exclusion due to finite halo size leads to a sub-Poissonian noise signature on large scales, consistent with the results from N-body simulations
113 - F. Vazza , S. Banfi , C. Gheller 2020
We present the first results of a campaign of ENZO cosmological simulations targeting the shocked and the neutral parts of the cosmic web, obtained with Supercomputing facilities provided by the INAF-CINECA agreement.
We examine the global HI properties of galaxies in quarter-billion particle cosmological simulations using Gadget-2, focusing on how galactic outflows impact HI content. We consider four outflow models, including a new one (ezw) motivated by recent interstellar medium simulations in which the wind speed and mass loading factor scale as expected for momentum-driven outflows for larger galaxies and energy-driven outflows for dwarfs (sigma<75 km/s). To obtain predicted HI masses, we employ a simple but effective local correction for particle self-shielding, and an observationally-constrained transition from neutral to molecular hydrogen. Our ezw simulation produces an HI mass function whose faint-end slope of -1.3 agrees well with observations from the ALFALFA survey; other models agree less well. Satellite galaxies have a bimodal distribution in HI fraction versus halo mass, with smaller satellites and/or those in larger halos more often being HI-deficient. At a given stellar mass, HI content correlates with star formation rate and inversely correlates with metallicity, as expected if driven by stochasticity in the accretion rate. To higher redshifts, massive HI galaxies disappear and the mass function steepens. The global cosmic HI density conspires to remain fairly constant from z~5-0, but the relative contribution from smaller galaxies increases with redshift.
We present an analysis of the role of feedback in shaping the neutral hydrogen (HI) content of simulated disc galaxies. For our analysis, we have used two realisations of two separate Milky Way-like (~L*) discs - one employing a conservative feedback scheme (MUGS), the other significantly more energetic (MaGICC). To quantify the impact of these schemes, we generate zeroth moment (surface density) maps of the inferred HI distribution; construct power spectra associated with the underlying structure of the simulated cold ISM, in addition to their radial surface density and velocity dispersion profiles. Our results are compared with a parallel, self-consistent, analysis of empirical data from THINGS (The HI Nearby Galaxy Survey). Single power-law fits (P~k^gamma) to the power spectra of the stronger-feedback (MaGICC) runs (over spatial scales corresponding to 0.5 kpc to 20 kpc) result in slopes consistent with those seen in the THINGS sample (gamma = -2.5). The weaker-feedback (MUGS) runs exhibit shallower power law slopes (gamma = -1.2). The power spectra of the MaGICC simulations are more consistent though with a two-component fit, with a flatter distribution of power on larger scales (i.e., gamma = -1.4 for scales in excess of 2 kpc) and a steeper slope on scales below 1 kpc (gamma = -5), qualitatively consistent with empirical claims, as well as our earlier work on dwarf discs. The radial HI surface density profiles of the MaGICC discs show a clear exponential behaviour, while those of the MUGS suite are essentially flat; both behaviours are encountered in nature, although the THINGS sample is more consistent with our stronger (MaGICC) feedback runs.
We measure the neutral atomic hydrogen (HI) gas content of field galaxies at intermediate redshifts of z ~ 0.1 and z ~ 0.2 using hydrogen 21-cm emission lines observed with the Westerbork Synthesis Radio Telescope (WSRT). In order to make high signal-to-noise ratio detections, an HI signal stacking technique is applied: HI emission spectra from multiple galaxies, optically selected by the CNOC2 redshift survey project, are co-added to measure the average HI mass of galaxies in the two redshift bins. We calculate the cosmic HI gas densities ({Omega}_{HI}) at the two redshift regimes and compare those with measurements at other redshifts to investigate the global evolution of the HI gas density over cosmic time. From a total of 59 galaxies at z ~ 0.1 we find {Omega}_{HI} = (0.33 $pm$ 0.05) ~ $times$ 10$^{-3}$, and at z ~ 0.2 we find {Omega}_{HI} = (0.34 $pm$ 0.09) ~ $times$ 10$^{-3}$, based on 96 galaxies. These measurements help bridge the gap between high-z damped Lyman-$alpha$ observations and blind 21-cm surveys at $z=$ 0. We find that our measurements of {Omega}_{HI} at z ~ 0.1 and 0.2 are consistent with the HI gas density at z ~ 0 and that all measurements of {Omega}_{HI} from 21-cm emission observations at $z la$ ~ 0.2 are in agreement with no evolution of the HI gas content in galaxies during the last 2.4 Gyr.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا