No Arabic abstract
Hyper-parameters of time series models play an important role in time series analysis. Slight differences in hyper-parameters might lead to very different forecast results for a given model, and therefore, selecting good hyper-parameter values is indispensable. Most of the existing generic hyper-parameter tuning methods, such as Grid Search, Random Search, Bayesian Optimal Search, are based on one key component - search, and thus they are computationally expensive and cannot be applied to fast and scalable time-series hyper-parameter tuning (HPT). We propose a self-supervised learning framework for HPT (SSL-HPT), which uses time series features as inputs and produces optimal hyper-parameters. SSL-HPT algorithm is 6-20x faster at getting hyper-parameters compared to other search based algorithms while producing comparable accurate forecasting results in various applications.
Machine learning is a powerful method for modeling in different fields such as education. Its capability to accurately predict students success makes it an ideal tool for decision-making tasks related to higher education. The accuracy of machine learning models depends on selecting the proper hyper-parameters. However, it is not an easy task because it requires time and expertise to tune the hyper-parameters to fit the machine learning model. In this paper, we examine the effectiveness of automated hyper-parameter tuning techniques to the realm of students success. Therefore, we develop two automated Hyper-Parameter Optimization methods, namely grid search and random search, to assess and improve a previous studys performance. The experiment results show that applying random search and grid search on machine learning algorithms improves accuracy. We empirically show automated methods superiority on real-world educational data (MIDFIELD) for tuning HPs of conventional machine learning classifiers. This work emphasizes the effectiveness of automated hyper-parameter optimization while applying machine learning in the education field to aid faculties, directors, or non-expert users decisions to improve students success.
This paper proposes the first-ever algorithmic framework for tuning hyper-parameters of stochastic optimization algorithm based on reinforcement learning. Hyper-parameters impose significant influences on the performance of stochastic optimization algorithms, such as evolutionary algorithms (EAs) and meta-heuristics. Yet, it is very time-consuming to determine optimal hyper-parameters due to the stochastic nature of these algorithms. We propose to model the tuning procedure as a Markov decision process, and resort the policy gradient algorithm to tune the hyper-parameters. Experiments on tuning stochastic algorithms with different kinds of hyper-parameters (continuous and discrete) for different optimization problems (continuous and discrete) show that the proposed hyper-parameter tuning algorithms do not require much less running times of the stochastic algorithms than bayesian optimization method. The proposed framework can be used as a standard tool for hyper-parameter tuning in stochastic algorithms.
While Semi-supervised learning has gained much attention in computer vision on image data, yet limited research exists on its applicability in the time series domain. In this work, we investigate the transferability of state-of-the-art deep semi-supervised models from image to time series classification. We discuss the necessary model adaptations, in particular an appropriate model backbone architecture and the use of tailored data augmentation strategies. Based on these adaptations, we explore the potential of deep semi-supervised learning in the context of time series classification by evaluating our methods on large public time series classification problems with varying amounts of labelled samples. We perform extensive comparisons under a decidedly realistic and appropriate evaluation scheme with a unified reimplementation of all algorithms considered, which is yet lacking in the field. We find that these transferred semi-supervised models show significant performance gains over strong supervised, semi-supervised and self-supervised alternatives, especially for scenarios with very few labelled samples.
We study a budgeted hyper-parameter tuning problem, where we optimize the tuning result under a hard resource constraint. We propose to solve it as a sequential decision making problem, such that we can use the partial training progress of configurations to dynamically allocate the remaining budget. Our algorithm combines a Bayesian belief model which estimates the future performance of configurations, with an action-value function which balances exploration-exploitation tradeoff, to optimize the final output. It automatically adapts the tuning behaviors to different constraints, which is useful in practice. Experiment results demonstrate superior performance over existing algorithms, including the-state-of-the-art one, on real-world tuning tasks across a range of different budgets.
As neural networks are increasingly employed in machine learning practice, how to efficiently share limited training resources among a diverse set of model training tasks becomes a crucial issue. To achieve better utilization of the shared resources, we explore the idea of jointly training multiple neural network models on a single GPU in this paper. We realize this idea by proposing a primitive, called pack. We further present a comprehensive empirical study of pack and end-to-end experiments that suggest significant improvements for hyperparameter tuning. The results suggest: (1) packing two models can bring up to 40% performance improvement over unpacked setups for a single training step and the improvement increases when packing more models; (2) the benefit of the pack primitive largely depends on a number of factors including memory capacity, chip architecture, neural network structure, and batch size; (3) there exists a trade-off between packing and unpacking when training multiple neural network models on limited resources; (4) a pack-aware Hyperband is up to 2.7x faster than the original Hyperband, with this improvement growing as memory size increases and subsequently the density of models packed.