Do you want to publish a course? Click here

Controlling the oxidation of magnetic and electrically conductive solid-solution iron-rhodium nanoparticles synthesized by Laser Ablation in Liquids

66   0   0.0 ( 0 )
 Added by SeHo Kim
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

This study focuses on the synthesis of FeRh nanoparticles via pulsed laser ablation in liquid and on controlling the oxidation of the synthesized nanoparticles. Formation of monomodal {gamma}-FeRh nanoparticles was confirmed by transmission electron microscopy (TEM) and their composition confirmed by atom probe tomography (APT). On these particles, three major contributors to oxidation were analysed: 1) dissolved oxygen in the organic solvents, 2) the bound oxygen in the solvent and 3) oxygen in the atmosphere above the solvent. The decrease of oxidation for optimized ablation conditions was confirmed through energy-dispersive X-ray (EDX) and Mossbauer spectroscopy. Furthermore, the time dependence of oxidation was monitored for dried FeRh nanoparticles powders using ferromagnetic resonance spectroscopy (FMR). By magnetophoretic separation, B2-FeRh nanoparticles could be extracted from the solution and characteristic differences of nanostrand formation between {gamma}-FeRh and B2-FeRh nanoparticles were observed.



rate research

Read More

In recent years there has been a growing interest in sp-carbon chains as possible novel nanostructures. An example of sp-carbon chains are the so-called polyynes, characterized by the alternation of single and triple bonds that can be synthesized by pulsed laser ablation in liquid (PLAL) of a graphite target. In this work, by exploiting different solvents in the PLAL process, e.g. water, acetonitrile, methanol, ethanol, and isopropanol, we systematically investigate the solvent role in polyyne formation and stability. The presence of methyland cyano-groups in the solutions influences the termination of polyynes, allowing to detect, in addition to hydrogen-capped polyynes up to HC22H, methyl-capped polyynes up to 18 carbon atoms (i.e. HCnCH3) and cyanopolyynes up to HC12CN. The assignment of each species was done by UV-Vis spectroscopy and supported by density functional theory simulations of vibronic spectra. In addition, surface-enhanced Raman spectroscopy allowed to observe differences, due to different terminations (hydrogen, methyl-and cyano group), in the shape and positions of the characteristic Raman bands of the size-selected polyynes. The evolution in time of each polyyne has been investigated evaluating the chromatographic peak area, and the effect of size, terminations and solvents on polyynes stability has been individuated.
We report a study on the pressure response of the anisotropy energy of hollow and solid maghemite nanoparticles. The differences between the maghemite samples are understood in terms of size, magnetic anisotropy and shape of the particles. In particular, the differences between hollow and solid samples are due to the different shape of the nanoparticles and by comparing both pressure responses it is possible to conclude that the shell has a larger pressure response when compared to the core.
Iron-oxide nanoparticles have been synthesized by high temperature arc plasma route with different plasma currents and characterized for their structure, morphology and local atomic order. Fe K-edge x-ray absorption spectra reveal distinct local structure of the samples grown with different plasma currents. We have shown that the local disorder is higher for the higher plasma current grown samples that also have a larger average particle-size. The results provide useful information to control structural and morphological properties of nanoparticles grown by high temperature plasma synthesis process.
We present the design and implementation of a scanning probe microscope, which combines electrically detected magnetic resonance (EDMR) and (photo-)conductive atomic force microscopy ((p)cAFM). The integration of a 3-loop 2-gap X-band microwave resonator into an AFM allows the use of conductive AFM tips as a movable contact for EDMR experiments. The optical readout of the AFM cantilever is based on an infrared laser to avoid disturbances of current measurements by absorption of straylight of the detection laser. Using amorphous silicon thin film samples with varying defect densities, the capability to detect a spatial EDMR contrast is demonstrated. Resonant current changes as low as 20 fA can be detected, allowing the method to realize a spin sensitivity of 8*10^6 spins/Hz^0.5 at room temperature.
Magnetic particle hyperthermia, in which colloidal nanostructures are exposed to an alternating magnetic field, is a promising approach to cancer therapy. Unfortunately, the clinical efficacy of hyperthermia has not yet been optimized. Consequently, routes to improve magnetic particle hyperthermia such as designing hybrid structures comprised from different phase materials are actively pursued. Here we demonstrate enhanced hyperthermia efficiency in relative large spherical Fe/Fe-oxide core/shell nanoparticles through the manipulation of interactions between the core and shell phases. Experimental results on exemplary samples with diameters in the range 30-80 nm indicated a direct correlation of hysteresis losses to the observed temperature elevation rate with a maximum efficiency of around 0.9 kW/g. The absolute particle size, the core/shell ratio, and the interposition of a thin wustite interlayer, are shown to have powerful effects on the specific absorption rate. By comparing our measurements to micromagnetic calculations we have unveiled topologically non-trivial magnetisation reversal modes under which interparticle interactions become negligible, aggregates formation is minimized, and the energy that is converted into heat is increased. This information has been overlooked till date and is in stark contrast to the existing knowledge on homogeneous particles.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا