Do you want to publish a course? Click here

The Hawaii Infrared Parallax Program. V. New T-Dwarf Members and Candidate Members of Nearby Young Moving Groups

395   0   0.0 ( 0 )
 Added by Zhoujian Zhang
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a search for new planetary-mass members of nearby young moving groups (YMGs) using astrometry for 694 T and Y dwarfs, including 447 objects with parallaxes, mostly produced by recent large parallax programs from UKIRT and Spitzer. Using the BANYAN $Sigma$ and LACEwING algorithms, we identify 30 new candidate YMG members, with spectral types of T0$-$T9 and distances of $10-43$ pc. Some candidates have unusually red colors and/or faint absolute magnitudes compared to field dwarfs with similar spectral types, providing supporting evidence for their youth, including 4 early-T dwarfs. We establish one of these, the variable T1.5 dwarf 2MASS J21392676$+$0220226, as a new planetary-mass member ($14.6^{+3.2}_{-1.6}$ M$_{rm Jup}$) of the Carina-Near group ($200pm50$ Myr) based on its full six-dimensional kinematics, including a new parallax measurement from CFHT. The high-amplitude variability of this object is suggestive of a young age, given the coexistence of variability and youth seen in previously known YMG T dwarfs. Our four latest-type (T8$-$T9) YMG candidates, WISE J031624.35$+$430709.1, ULAS J130217.21$+$130851.2, WISEPC J225540.74$-$311841.8, and WISE J233226.49$-$432510.6, if confirmed, will be the first free-floating planets ($approx2-6$ M$_{rm Jup}$) whose ages and luminosities are compatible with both hot-start and cold-start evolutionary models, and thus overlap the properties of the directly-imaged planet 51 Eri b. Several of our early/mid-T candidates have peculiar near-infrared spectra, indicative of heterogenous photospheres or unresolved binarity. Radial velocity measurements needed for final membership assessment for most of our candidates await upcoming 20$-$30 meter class telescopes. In addition, we compile all 15 known T7$-$Y1 benchmarks and derive a homogeneous set of their effective temperatures, surface gravities, radii, and masses.



rate research

Read More

117 - H. Canovas , C. Cantero , L. Cieza 2019
The Ophiuchus cloud complex is one of the best laboratories to study the earlier stages of the stellar and protoplanetary disc evolution. The wealth of accurate astrometric measurements contained in the Gaia Data Release 2 can be used to update the census of Ophiuchus member candidates. We seek to find potential new members of Ophiuchus and identify those surrounded by a circumstellar disc. We constructed a control sample composed of 188 bona fide Ophiuchus members. Using this sample as a reference we applied three different density-based machine learning clustering algorithms (DBSCAN, OPTICS, and HDBSCAN) to a sample drawn from the Gaia catalogue centred on the Ophiuchus cloud. The clustering analysis was applied in the five astrometric dimensions defined by the three-dimensional Cartesian space and the proper motions in right ascension and declination. The three clustering algorithms systematically identify a similar set of candidate members in a main cluster with astrometric properties consistent with those of the control sample. The increased flexibility of the OPTICS and HDBSCAN algorithms enable these methods to identify a secondary cluster. We constructed a common sample containing 391 member candidates including 166 new objects, which have not yet been discussed in the literature. By combining the Gaia data with 2MASS and WISE photometry, we built the spectral energy distributions from 0.5 to $22microm$ for a subset of 48 objects and found a total of 41 discs, including 11 Class II and 1 Class III new discs. Density-based clustering algorithms are a promising tool to identify candidate members of star forming regions in large astrometric databases. If confirmed, the candidate members discussed in this work would represent an increment of roughly 40% of the current census of Ophiuchus.
242 - Joel H. Kastner 2015
Beginning with the enigmatic (and now emblematic) TW Hya, the scutiny of individual stars and star-disk systems has both motivated and benefitted from the identification of nearby young moving groups (NYMGs). I briefly outline the emergence of this relatively new subfield of astronomy over the past two decades, and offer a few examples illustrating how the study of NYMGs and their members enables unique investigations of pre-main sequence stellar evolution, evolved protoplanetary disks, and young exoplanets.
We present optical and near-infrared adaptive optics (AO) imaging and spectroscopy of 13 ultracool (>M6) companions to late-type stars (K7-M4.5), most of which have recently been identified as candidate members of nearby young moving groups (YMGs; 8-120 Myr) in the literature. The inferred masses of the companions (~10-100 Mjup) are highly sensitive to the ages of the primary stars so we critically examine the kinematic and spectroscopic properties of each system to distinguish bona fide YMG members from old field interlopers. 2MASS J02155892-0929121 C is a new M7 substellar companion (40-60 Mjup) with clear spectroscopic signs of low gravity and hence youth. The primary, possibly a member of the ~40 Myr Tuc-Hor moving group, is visually resolved into three components, making it a young low-mass quadruple system in a compact (<100 AU) configuration. In addition, Li 1 $lambda$6708 absorption in the intermediate-gravity M7.5 companion 2MASS J15594729+4403595 B provides unambiguous evidence that it is young (<200 Myr) and resides below the hydrogen burning limit. Three new close-separation (<1) companions (2MASS J06475229-2523304 B, PYC J11519+0731 B, and GJ 4378 Ab) orbit stars previously reported as candidate YMG members, but instead are likely old (>1 Gyr) tidally-locked spectroscopic binaries without convincing kinematic associations with any known moving group. The high rate of false positives in the form of old active stars with YMG-like kinematics underscores the importance of radial velocity and parallax measurements to validate candidate young stars identified via proper motion and activity selection alone. Finally, we spectroscopically confirm the cool temperature and substellar nature of HD 23514 B, a recently discovered M8 benchmark brown dwarf orbiting the dustiest-known member of the Pleiades. [Abridged]
126 - Trent J. Dupuy 2012
We present the first results from our high-precision infrared (IR) astrometry program at the Canada-France-Hawaii Telescope. We measure parallaxes for 83 ultracool dwarfs (spectral types M6--T9) in 49 systems, with a median uncertainty of 1.1 mas (2.3%) and as good as 0.7 mas (0.8%). We provide the first parallaxes for 48 objects in 29 systems, and for another 27 objects in 17 systems, we significantly improve upon published results, with a median (best) improvement of 1.7x (5x). Three systems show astrometric perturbations indicative of orbital motion; two are known binaries (2MASSJ0518-2828AB and 2MASSJ1404-3159AB) and one is spectrally peculiar (SDSSJ0805+4812). In addition, we present here a large set of Keck adaptive optics imaging that more than triples the number of binaries with L6--T5 components that have both multi-band photometry and distances. Our data enable an unprecedented look at the photometric properties of brown dwarfs as they cool through the L/T transition. Going from approxL8 to approxT4.5, flux in the Y and J bands increases by approx0.7 mag and approx0.5 mag, respectively (the Y- and J-band bumps), while flux in the H, K, and L bands declines monotonically. This wavelength dependence is consistent with cloud clearing over a narrow range of temperature, since condensate opacity is expected to dominate at 1.0--1.3 micron. Interestingly, despite more than doubling the near-IR census of L/T transition objects, we find a conspicuous paucity of objects on the color--magnitude diagram just blueward of the late-L/early-T sequence. This L/T gap occurs at MKO(J-H) = 0.1--0.3 mag, MKO(J-K) = 0.0--0.4 mag, and implies that the last phases of cloud evolution occur rapidly. Finally, we provide a comprehensive update to the absolute magnitudes of ultracool dwarfs as a function of spectral type using a combined sample of 314 objects.
Optical spectroscopic observations are reported for 24 and 23, nearby, proper-motion-selected M-dwarf candidate members of the Beta Pictoris and AB Doradus moving groups (BPMG and ABDMG). Using kinematic criteria, the presence of both Halpha emission and high X-ray-to-bolometric luminosity, and position in absolute colour-magnitude diagrams, 10 and 6 of these candidates are confirmed as likely members of the BPMG and ABDMG respectively. Equivalent widths or upper limits for the Li I 6708A line are reported and the lithium depletion boundary (LDB) age of the BPMG is revisited. Whilst non-magnetic evolutionary models still yield an estimated age of 21 +/- 4 Myr, models that incorporate magnetic inhibition of convection imply an older age of 24 +/- 4 Myr. A similar systematic increase would be inferred if the stars were 25 per cent covered by dark magnetic starspots. Since young, convective M-dwarfs are magnetically active and do have starspots, we suggest that the original LDB age estimate is a lower limit. The LDB age of the ABDMG is still poorly constrained -- non-magnetic evolutionary models suggest an age in the range 35-150 Myr, which could be significantly tightened by new measurements for existing candidate members.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا