Do you want to publish a course? Click here

Newton Polygons of L-functions Associated to Deligne Polynomials

109   0   0.0 ( 0 )
 Added by Jiyou Li
 Publication date 2021
  fields
and research's language is English
 Authors Jiyou Li




Ask ChatGPT about the research

A conjecture of Le says that the Deligne polytope $Delta_d$ is generically ordinary if $pequiv 1 (!!bmod D(Delta_d))$, where $D(Delta_d)$ is a combinatorial constant determined by $Delta_d$. In this paper a counterexample is given to show that the conjecture is not true in general.



rate research

Read More

138 - Chunlin Wang , Liping Yang 2021
In this paper, we study the Newton polygons for the $L$-functions of $n$-variable generalized Kloosterman sums. Generally, the Newton polygon has a topological lower bound, called the Hodge polygon. In order to determine the Hodge polygon, we explicitly construct a basis of the top dimensional Dwork cohomology. Using Wans decomposition theorem and diagonal local theory, we obtain when the Newton polygon coincides with the Hodge polygon. In particular, we concretely get the slope sequence for $L$-function of $bar{F}(bar{lambda},x):=sum_{i=1}^nx_i^{a_i}+bar{lambda}prod_{i=1}^nx_i^{-1}$.
123 - Liping Yang , Hao Zhang 2021
In this paper, we consider the following $(A, B)$-polynomial $f$ over finite field: $$f(x_0,x_1,cdots,x_n)=x_0^Ah(x_1,cdots,x_n)+g(x_1,cdots,x_n)+P_B(1/x_0),$$ where $h$ is a Deligne polynomial of degree $d$, $g$ is an arbitrary polynomial of degree $< dB/(A+B)$ and $P_B(y)$ is a one-variable polynomial of degree $le B$. Let $Delta$ be the Newton polyhedron of $f$ at infinity. We show that $Delta$ is generically ordinary if $pequiv 1 mod D$, where $D$ is a constant only determined by $Delta$. In other words, we prove that the Adolphson--Sperber conjecture is true for $Delta$.
In recent years, a number of papers have been devoted to the study of roots of period polynomials of modular forms. Here, we study cohomological analogues of the Eichler-Shimura period polynomials corresponding to higher $L$-derivatives. We state general conjectures about the locations of the roots of the full and odd parts of the polynomials, in analogy with the existing literature on period polynomials, and we also give numerical evidence that similar results hold for our higher derivative period polynomials in the case of cusp forms. We prove a special case of this conjecture in the case of Eisenstein series.
Period polynomials have long been fruitful tools for the study of values of $L$-functions in the context of major outstanding conjectures. In this paper, we survey some facets of this study from the perspective of Eichler cohomology. We discuss ways to incorporate non-cuspidal modular forms and values of derivatives of $L$-functions into the same framework. We further review investigations of the location of zeros of the period polynomial as well as of its analogue for $L$-derivatives.
Integer partitions express the different ways that a positive integer may be written as a sum of other positive integers. Here we explore the analytic properties of a polynomial $f_lambda(x)$ that we call the partition polynomial for the partition $lambda$, with the hope of learning new properties of partitions. We prove a recursive formula for the derivatives of $f_lambda(x)$ involving Stirling numbers of the second kind, show that the set of integrals from 0 to 1 of a normalized version of $f_lambda(x)$ is dense in $[0,1/2]$, pose a few open questions, and formulate a conjecture relating the integral to the length of the partition. We also provide specific examples throughout to support our speculation that an in-depth analysis of partition polynomials could further strengthen our understanding of partitions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا