Do you want to publish a course? Click here

g-SiC6 Monolayer: A New Graphene-like Dirac Cone Material with a High Fermi Velocity

70   0   0.0 ( 0 )
 Added by Wencai Yi
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Two-dimensional (2D) materials with Dirac cones have been intrigued by many unique properties, i.e., the effective masses of carriers close to zero and Fermi velocity of ultrahigh, which yields a great possibility in high-performance electronic devices. In this work, using first-principles calculations, we have predicted a new Dirac cone material of silicon carbide with the new stoichiometries, named g-SiC6 monolayer, which is composed of sp2 hybridized with a graphene-like structure. The detailed calculations have revealed that g-SiC6 has outstanding dynamical, thermal, and mechanical stabilities, and the mechanical and electronic properties are still isotropic. Of great interest is that the Fermi velocity of g-SiC6 monolayer is the highest in silicon carbide Dirac materials until now. The Dirac cone of the g-SiC6 is controllable by an in-plane uniaxial strain and shear strain, which is promised to realize a direct application in electronics and optoelectronics. Moreover, we found that new stoichiometries AB6 (A, B = C, Si, and Ge) compounds with the similar SiC6 monolayer structure are both dynamics stable and possess Dirac cones, and their Fermi velocity was also calculated in this paper. Given the outstanding properties of those new types of silicon carbide monolayer, which is a promising 2D material for further exploring the potential applications.



rate research

Read More

Searching for two-dimensional (2D) organic Dirac materials, which have more adaptable practical applications in comparing with inorganic ones, is of great significance and has been ongoing. However, only two kinds of these materials with low Fermi velocity have been discovered so far. Herein, we report the design of an organic monolayer with C$_4$N$_3$H stoichiometry which possesses fascinating structure and good stability in its free-standing state. More importantly, we demonstrate that this monolayer is a semimetal with anisotropic Dirac cones and very high Fermi velocity. This Fermi velocity is roughly one order of magnitude larger than that in 2D organic Dirac materials ever reported, and is comparable to that in graphene. The Dirac states in this monolayer arise from the extended $pi$-electron conjugation system formed by the overlapping 2emph{p}$_z$ orbitals of carbon and nitrogen atoms. Our finding opens a door for searching more 2D organic Dirac materials with high Fermi velocity.
Recent synthesis of monolayer borophene (triangle boron monolayer) on the substrate opens the era of boron nanosheet (Science, 350, 1513, $mathbf{2015}$), but the structural stability and novel physical properties are still open issues. Here we demonstrated borophene can be stabilized with fully surface hydrogenation, called as borophane, from first-principles calculations. Most interesting, it shows that borophane has direction-dependent Dirac cones, which are mainly contributed by in-plane emph{p$_{x}$} and emph{p$_{y}$} orbitals of boron atoms. The Dirac fermions possess an ultrahigh Fermi velocity up to 3.0$times$10$^{6}$ m/s, 4 times higher than that of graphene. The Youngs modules are calculated to be 129 and 200 GPa$cdot$nm along two different directions, which is comparable with steel. The ultrahigh Fermi velocity and high mechanical feature render borophane ideal for nanoelectronics applications.
The electronic properties of one-dimensional graphene superlattices strongly depend on the atomic size and orientation of the 1D external periodic potential. Using a tight-binding approach, we show that the armchair and zigzag directions in these superlattices have a different impact on the renormalization of the anisotropic velocity of the charge carriers. For symmetric potential barriers, the velocity perpendicular to the barrier is modified for the armchair direction while remaining unchanged in the zigzag case. For asymmetric barriers, the initial symmetry between the forward and backward momentum with respect to the Dirac cone symmetry is broken for the velocity perpendicular (armchair case) or parallel (zigzag case) to the barriers. At last, Dirac cone multiplication at the charge neutrality point occurs only for the zigzag geometry. In contrast, band gaps appear in the electronic structure of the graphene superlattice with barrier in the armchair direction.
We develop two types of graphene devices based on nanoelectromechanical systems (NEMS), that allows transport measurement in the presence of in situ strain modulation. Different mobility and conductance responses to strain were observed for single layer and bilayer samples. These types of devices can be extended to other 2D membranes such as MoS2, providing transport, optical or other measurements with in situ strain.
We propose a new 2D semiconductor material (TTA-2D) based on the molecular structure of Thiophene-Tetrathia-Annulene (TTA). The TTA-2D structural, electronic, and optical properties were investigated using textit{ab initio} methods. Our results show that TTA-2D is a small indirect bandgap semiconductor ($0.6$ eV). A semiconductor-metal transition can be induced by applying a uniaxial strain. Our results also show that TTA-2D is thermally stable up to $T=1000$ K. TTA-2D absorbs in a large spectral range, from infrared to ultraviolet regions. Values of refractive index and reflectivity show that TTA-2D reflects only $10%$ of the incident light in the visible region. These results suggest that TTA-2D is a promising material for solar cell applications.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا