No Arabic abstract
We consider the problem of computing the k-means centers for a large high-dimensional dataset in the context of edge-based machine learning, where data sources offload machine learning computation to nearby edge servers. k-Means computation is fundamental to many data analytics, and the capability of computing provably accurate k-means centers by leveraging the computation power of the edge servers, at a low communication and computation cost to the data sources, will greatly improve the performance of these analytics. We propose to let the data sources send small summaries, generated by joint dimensionality reduction (DR) and cardinality reduction (CR), to support approximate k-means computation at reduced complexity and communication cost. By analyzing the complexity, the communication cost, and the approximation error of k-means algorithms based on state-of-the-art DR/CR methods, we show that: (i) it is possible to achieve a near-optimal approximation at a near-linear complexity and a constant or logarithmic communication cost, (ii) the order of applying DR and CR significantly affects the complexity and the communication cost, and (iii) combining DR/CR methods with a properly configured quantizer can further reduce the communication cost without compromising the other performance metrics. Our findings are validated through experiments based on real datasets.
When the data is distributed across multiple servers, lowering the communication cost between the servers (or workers) while solving the distributed learning problem is an important problem and is the focus of this paper. In particular, we propose a fast, and communication-efficient decentralized framework to solve the distributed machine learning (DML) problem. The proposed algorithm, Group Alternating Direction Method of Multipliers (GADMM) is based on the Alternating Direction Method of Multipliers (ADMM) framework. The key novelty in GADMM is that it solves the problem in a decentralized topology where at most half of the workers are competing for the limited communication resources at any given time. Moreover, each worker exchanges the locally trained model only with two neighboring workers, thereby training a global model with a lower amount of communication overhead in each exchange. We prove that GADMM converges to the optimal solution for convex loss functions, and numerically show that it converges faster and more communication-efficient than the state-of-the-art communication-efficient algorithms such as the Lazily Aggregated Gradient (LAG) and dual averaging, in linear and logistic regression tasks on synthetic and real datasets. Furthermore, we propose Dynamic GADMM (D-GADMM), a variant of GADMM, and prove its convergence under the time-varying network topology of the workers.
We introduce a novel design for in-situ training of machine learning algorithms built into smart sensors, and illustrate distributed training scenarios using radio frequency (RF) spectrum sensors. Current RF sensors at the Edge lack the computational resources to support practical, in-situ training for intelligent signal classification. We propose a solution using Deepdelay Loop Reservoir Computing (DLR), a processing architecture that supports machine learning algorithms on resource-constrained edge-devices by leveraging delayloop reservoir computing in combination with innovative hardware. DLR delivers reductions in form factor, hardware complexity and latency, compared to the State-ofthe- Art (SoA) neural nets. We demonstrate DLR for two applications: RF Specific Emitter Identification (SEI) and wireless protocol recognition. DLR enables mobile edge platforms to authenticate and then track emitters with fast SEI retraining. Once delay loops separate the data classes, traditionally complex, power-hungry classification models are no longer needed for the learning process. Yet, even with simple classifiers such as Ridge Regression (RR), the complexity grows at least quadratically with the input size. DLR with a RR classifier exceeds the SoA accuracy, while further reducing power consumption by leveraging the architecture of parallel (split) loops. To authenticate mobile devices across large regions, DLR can be trained in a distributed fashion with very little additional processing and a small communication cost, all while maintaining accuracy. We illustrate how to merge locally trained DLR classifiers in use cases of interest.
Federated learning (FL) offers a solution to train a global machine learning model while still maintaining data privacy, without needing access to data stored locally at the clients. However, FL suffers performance degradation when client data distribution is non-IID, and a longer training duration to combat this degradation may not necessarily be feasible due to communication limitations. To address this challenge, we propose a new adaptive training algorithm $texttt{AdaFL}$, which comprises two components: (i) an attention-based client selection mechanism for a fairer training scheme among the clients; and (ii) a dynamic fraction method to balance the trade-off between performance stability and communication efficiency. Experimental results show that our $texttt{AdaFL}$ algorithm outperforms the usual $texttt{FedAvg}$ algorithm, and can be incorporated to further improve various state-of-the-art FL algorithms, with respect to three aspects: model accuracy, performance stability, and communication efficiency.
We present a simple heuristic algorithm for efficiently optimizing the notoriously hard minimum sum-of-squares clustering problem, usually addressed by the classical k-means heuristic and its variants. The algorithm, called recombinator-k-means, is very similar to a genetic algorithmic scheme: it uses populations of configurations, that are optimized independently in parallel and then recombined in a next-iteration population batch by exploiting a variant of the k-means++ seeding algorithm. An additional reweighting mechanism ensures that the population eventually coalesces into a single solution. Extensive tests measuring optimization objective vs computational time on synthetic and real-word data show that it is the only choice, among state-of-the-art alternatives (simple restarts, random swap, genetic algorithm with pairwise-nearest-neighbor crossover), that consistently produces good results at all time scales, outperforming competitors on large and complicated datasets. The only parameter that requires tuning is the population size. The scheme is rather general (it could be applied even to k-medians or k-medoids, for example). Our implementation is publicly available at https://github.com/carlobaldassi/RecombinatorKMeans.jl.
Recently, neuro-inspired episodic control (EC) methods have been developed to overcome the data-inefficiency of standard deep reinforcement learning approaches. Using non-/semi-parametric models to estimate the value function, they learn rapidly, retrieving cached values from similar past states. In realistic scenarios, with limited resources and noisy data, maintaining meaningful representations in memory is essential to speed up the learning and avoid catastrophic forgetting. Unfortunately, EC methods have a large space and time complexity. We investigate different solutions to these problems based on prioritising and ranking stored states, as well as online clustering techniques. We also propose a new dynamic online k-means algorithm that is both computationally-efficient and yields significantly better performance at smaller memory sizes; we validate this approach on classic reinforcement learning environments and Atari games.