Do you want to publish a course? Click here

Hyperparameter Optimization with Differentiable Metafeatures

132   0   0.0 ( 0 )
 Added by Hadi Samer Jomaa
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Metafeatures, or dataset characteristics, have been shown to improve the performance of hyperparameter optimization (HPO). Conventionally, metafeatures are precomputed and used to measure the similarity between datasets, leading to a better initialization of HPO models. In this paper, we propose a cross dataset surrogate model called Differentiable Metafeature-based Surrogate (DMFBS), that predicts the hyperparameter response, i.e. validation loss, of a model trained on the dataset at hand. In contrast to existing models, DMFBS i) integrates a differentiable metafeature extractor and ii) is optimized using a novel multi-task loss, linking manifold regularization with a dataset similarity measure learned via an auxiliary dataset identification meta-task, effectively enforcing the response approximation for similar datasets to be similar. We compare DMFBS against several recent models for HPO on three large meta-datasets and show that it consistently outperforms all of them with an average 10% improvement. Finally, we provide an extensive ablation study that examines the different components of our approach.



rate research

Read More

Recent work on hyperparameters optimization (HPO) has shown the possibility of training certain hyperparameters together with regular parameters. However, these online HPO algorithms still require running evaluation on a set of validation examples at each training step, steeply increasing the training cost. To decide when to query the validation loss, we model online HPO as a time-varying Bayesian optimization problem, on top of which we propose a novel textit{costly feedback} setting to capture the concept of the query cost. Under this setting, standard algorithms are cost-inefficient as they evaluate on the validation set at every round. In contrast, the cost-efficient GP-UCB algorithm proposed in this paper queries the unknown function only when the model is less confident about current decisions. We evaluate our proposed algorithm by tuning hyperparameters online for VGG and ResNet on CIFAR-10 and ImageNet100. Our proposed online HPO algorithm reaches human expert-level performance within a single run of the experiment, while incurring only modest computational overhead compared to regular training.
Recent work has shown how to embed differentiable optimization problems (that is, problems whose solutions can be backpropagated through) as layers within deep learning architectures. This method provides a useful inductive bias for certain problems, but existing software for differentiable optimization layers is rigid and difficult to apply to new settings. In this paper, we propose an approach to differentiating through disciplined convex programs, a subclass of convex optimization problems used by domain-specific languages (DSLs) for convex optimization. We introduce disciplined parametrized programming, a subset of disciplined convex programming, and we show that every disciplined parametrized program can be represented as the composition of an affine map from parameters to problem data, a solver, and an affine map from the solvers solution to a solution of the original problem (a new form we refer to as affine-solver-affine form). We then demonstrate how to efficiently differentiate through each of these components, allowing for end-to-end analytical differentiation through the entire convex program. We implement our methodology in version 1.1 of CVXPY, a popular Python-embedded DSL for convex optimization, and additionally implement differentiable layers for disciplined convex programs in PyTorch and TensorFlow 2.0. Our implementation significantly lowers the barrier to using convex optimization problems in differentiable programs. We present applications in linear machine learning models and in stochastic control, and we show that our layer is competitive (in execution time) compared to specialized differentiable solvers from past work.
This paper presents a novel and lightweight hyperparameter optimization (HPO) method, MOdular FActorial Design (MOFA). MOFA pursues several rounds of HPO, where each round alternates between exploration of hyperparameter space by factorial design and exploitation of evaluation results by factorial analysis. Each round first explores the configuration space by constructing a low-discrepancy set of hyperparameters that cover this space well while de-correlating hyperparameters, and then exploits evaluation results through factorial analysis that determines which hyperparameters should be further explored and which should become fixed in the next round. We prove that the inference of MOFA achieves higher confidence than other sampling schemes. Each individual round is highly parallelizable and hence offers major improvements of efficiency compared to model-based methods. Empirical results show that MOFA achieves better effectiveness and efficiency compared with state-of-the-art methods.
Computer vision is experiencing an AI renaissance, in which machine learning models are expediting important breakthroughs in academic research and commercial applications. Effectively training these models, however, is not trivial due in part to hyperparameters: user-configured values that control a models ability to learn from data. Existing hyperparameter optimization methods are highly parallel but make no effort to balance the search across heterogeneous hardware or to prioritize searching high-impact spaces. In this paper, we introduce a framework for massively Scalable Hardware-Aware Distributed Hyperparameter Optimization (SHADHO). Our framework calculates the relative complexity of each search space and monitors performance on the learning task over all trials. These metrics are then used as heuristics to assign hyperparameters to distributed workers based on their hardware. We first demonstrate that our framework achieves double the throughput of a standard distributed hyperparameter optimization framework by optimizing SVM for MNIST using 150 distributed workers. We then conduct model search with SHADHO over the course of one week using 74 GPUs across two compute clusters to optimize U-Net for a cell segmentation task, discovering 515 models that achieve a lower validation loss than standard U-Net.
Performance of machine learning algorithms depends critically on identifying a good set of hyperparameters. While recent approaches use Bayesian optimization to adaptively select configurations, we focus on speeding up random search through adaptive resource allocation and early-stopping. We formulate hyperparameter optimization as a pure-exploration non-stochastic infinite-armed bandit problem where a predefined resource like iterations, data samples, or features is allocated to randomly sampled configurations. We introduce a novel algorithm, Hyperband, for this framework and analyze its theoretical properties, providing several desirable guarantees. Furthermore, we compare Hyperband with popular Bayesian optimization methods on a suite of hyperparameter optimization problems. We observe that Hyperband can provide over an order-of-magnitude speedup over our competitor set on a variety of deep-learning and kernel-based learning problems.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا