Do you want to publish a course? Click here

Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization

130   0   0.0 ( 0 )
 Added by Lisha Li
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

Performance of machine learning algorithms depends critically on identifying a good set of hyperparameters. While recent approaches use Bayesian optimization to adaptively select configurations, we focus on speeding up random search through adaptive resource allocation and early-stopping. We formulate hyperparameter optimization as a pure-exploration non-stochastic infinite-armed bandit problem where a predefined resource like iterations, data samples, or features is allocated to randomly sampled configurations. We introduce a novel algorithm, Hyperband, for this framework and analyze its theoretical properties, providing several desirable guarantees. Furthermore, we compare Hyperband with popular Bayesian optimization methods on a suite of hyperparameter optimization problems. We observe that Hyperband can provide over an order-of-magnitude speedup over our competitor set on a variety of deep-learning and kernel-based learning problems.



rate research

Read More

We present TaskSet, a dataset of tasks for use in training and evaluating optimizers. TaskSet is unique in its size and diversity, containing over a thousand tasks ranging from image classification with fully connected or convolutional neural networks, to variational autoencoders, to non-volume preserving flows on a variety of datasets. As an example application of such a dataset we explore meta-learning an ordered list of hyperparameters to try sequentially. By learning this hyperparameter list from data generated using TaskSet we achieve large speedups in sample efficiency over random search. Next we use the diversity of the TaskSet and our method for learning hyperparameter lists to empirically explore the generalization of these lists to new optimization tasks in a variety of settings including ImageNet classification with Resnet50 and LM1B language modeling with transformers. As part of this work we have opensourced code for all tasks, as well as ~29 million training curves for these problems and the corresponding hyperparameters.
There has been substantial research on sub-linear time approximate algorithms for Maximum Inner Product Search (MIPS). To achieve fast query time, state-of-the-art techniques require significant preprocessing, which can be a burden when the number of subsequent queries is not sufficiently large to amortize the cost. Furthermore, existing methods do not have the ability to directly control the suboptimality of their approximate results with theoretical guarantees. In this paper, we propose the first approximate algorithm for MIPS that does not require any preprocessing, and allows users to control and bound the suboptimality of the results. We cast MIPS as a Best Arm Identification problem, and introduce a new bandit setting that can fully exploit the special structure of MIPS. Our approach outperforms state-of-the-art methods on both synthetic and real-world datasets.
In this study, a novel topology optimization approach based on conditional Wasserstein generative adversarial networks (CWGAN) is developed to replicate the conventional topology optimization algorithms in an extremely computationally inexpensive way. CWGAN consists of a generator and a discriminator, both of which are deep convolutional neural networks (CNN). The limited samples of data, quasi-optimal planar structures, needed for training purposes are generated using the conventional topology optimization algorithms. With CWGANs, the topology optimization conditions can be set to a required value before generating samples. CWGAN truncates the global design space by introducing an equality constraint by the designer. The results are validated by generating an optimized planar structure using the conventional algorithms with the same settings. A proof of concept is presented which is known to be the first such illustration of fusion of CWGANs and topology optimization.
Bandit problems with linear or concave reward have been extensively studied, but relatively few works have studied bandits with non-concave reward. This work considers a large family of bandit problems where the unknown underlying reward function is non-concave, including the low-rank generalized linear bandit problems and two-layer neural network with polynomial activation bandit problem. For the low-rank generalized linear bandit problem, we provide a minimax-optimal algorithm in the dimension, refuting both conjectures in [LMT21, JWWN19]. Our algorithms are based on a unified zeroth-order optimization paradigm that applies in great generality and attains optimal rates in several structured polynomial settings (in the dimension). We further demonstrate the applicability of our algorithms in RL in the generative model setting, resulting in improved sample complexity over prior approaches. Finally, we show that the standard optimistic algorithms (e.g., UCB) are sub-optimal by dimension factors. In the neural net setting (with polynomial activation functions) with noiseless reward, we provide a bandit algorithm with sample complexity equal to the intrinsic algebraic dimension. Again, we show that optimistic approaches have worse sample complexity, polynomial in the extrinsic dimension (which could be exponentially worse in the polynomial degree).
Given a huge set of applicants, how should a firm allocate sequential resume screenings, phone interviews, and in-person site visits? In a tiered interview process, later stages (e.g., in-person visits) are more informative, but also more expensive than earlier stages (e.g., resume screenings). Using accepted hiring models and the concept of structured interviews, a best practice in human resources, we cast tiered hiring as a combinatorial pure exploration (CPE) problem in the stochastic multi-armed bandit setting. The goal is to select a subset of arms (in our case, applicants) with some combinatorial structure. We present new algorithms in both the probably approximately correct (PAC) and fixed-budget settings that select a near-optimal cohort with provable guarantees. We show via simulations on real data from one of the largest US-based computer science graduate programs that our algorithms make better hiring decisions or use less budget than the status quo.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا