Do you want to publish a course? Click here

Speaker attribution with voice profiles by graph-based semi-supervised learning

91   0   0.0 ( 0 )
 Added by Jixuan Wang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Speaker attribution is required in many real-world applications, such as meeting transcription, where speaker identity is assigned to each utterance according to speaker voice profiles. In this paper, we propose to solve the speaker attribution problem by using graph-based semi-supervised learning methods. A graph of speech segments is built for each session, on which segments from voice profiles are represented by labeled nodes while segments from test utterances are unlabeled nodes. The weight of edges between nodes is evaluated by the similarities between the pretrained speaker embeddings of speech segments. Speaker attribution then becomes a semi-supervised learning problem on graphs, on which two graph-based methods are applied: label propagation (LP) and graph neural networks (GNNs). The proposed approaches are able to utilize the structural information of the graph to improve speaker attribution performance. Experimental results on real meeting data show that the graph based approaches reduce speaker attribution error by up to 68% compared to a baseline speaker identification approach that processes each utterance independently.



rate research

Read More

335 - Jixuan Wang , Xiong Xiao , Jian Wu 2020
Deep speaker embedding models have been commonly used as a building block for speaker diarization systems; however, the speaker embedding model is usually trained according to a global loss defined on the training data, which could be sub-optimal for distinguishing speakers locally in a specific meeting session. In this work we present the first use of graph neural networks (GNNs) for the speaker diarization problem, utilizing a GNN to refine speaker embeddings locally using the structural information between speech segments inside each session. The speaker embeddings extracted by a pre-trained model are remapped into a new embedding space, in which the different speakers within a single session are better separated. The model is trained for linkage prediction in a supervised manner by minimizing the difference between the affinity matrix constructed by the refined embeddings and the ground-truth adjacency matrix. Spectral clustering is then applied on top of the refined embeddings. We show that the clustering performance of the refined speaker embeddings outperforms the original embeddings significantly on both simulated and real meeting data, and our system achieves the state-of-the-art result on the NIST SRE 2000 CALLHOME database.
Automatic speech quality assessment is an important, transversal task whose progress is hampered by the scarcity of human annotations, poor generalization to unseen recording conditions, and a lack of flexibility of existing approaches. In this work, we tackle these problems with a semi-supervised learning approach, combining available annotations with programmatically generated data, and using 3 different optimization criteria together with 5 complementary auxiliary tasks. Our results show that such a semi-supervised approach can cut the error of existing methods by more than 36%, while providing additional benefits in terms of reusable features or auxiliary outputs. Improvement is further corroborated with an out-of-sample test showing promising generalization capabilities.
Recently, end-to-end multi-speaker text-to-speech (TTS) systems gain success in the situation where a lot of high-quality speech plus their corresponding transcriptions are available. However, laborious paired data collection processes prevent many institutes from building multi-speaker TTS systems of great performance. In this work, we propose a semi-supervised learning approach for multi-speaker TTS. A multi-speaker TTS model can learn from the untranscribed audio via the proposed encoder-decoder framework with discrete speech representation. The experiment results demonstrate that with only an hour of paired speech data, no matter the paired data is from multiple speakers or a single speaker, the proposed model can generate intelligible speech in different voices. We found the model can benefit from the proposed semi-supervised learning approach even when part of the unpaired speech data is noisy. In addition, our analysis reveals that different speaker characteristics of the paired data have an impact on the effectiveness of semi-supervised TTS.
This paper presents our work of training acoustic event detection (AED) models using unlabeled dataset. Recent acoustic event detectors are based on large-scale neural networks, which are typically trained with huge amounts of labeled data. Labels for acoustic events are expensive to obtain, and relevant acoustic event audios can be limited, especially for rare events. In this paper we leverage an Internet-scale unlabeled dataset with potential domain shift to improve the detection of acoustic events. Based on the classic tri-training approach, our proposed method shows accuracy improvement over both the supervised training baseline, and semisupervised self-training set-up, in all pre-defined acoustic event detection tasks. As our approach relies on ensemble models, we further show the improvements can be distilled to a single model via knowledge distillation, with the resulting single student model maintaining high accuracy of teacher ensemble models.
Neural evaluation metrics derived for numerous speech generation tasks have recently attracted great attention. In this paper, we propose SVSNet, the first end-to-end neural network model to assess the speaker voice similarity between natural speech and synthesized speech. Unlike most neural evaluation metrics that use hand-crafted features, SVSNet directly takes the raw waveform as input to more completely utilize speech information for prediction. SVSNet consists of encoder, co-attention, distance calculation, and prediction modules and is trained in an end-to-end manner. The experimental results on the Voice Conversion Challenge 2018 and 2020 (VCC2018 and VCC2020) datasets show that SVSNet notably outperforms well-known baseline systems in the assessment of speaker similarity at the utterance and system levels.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا