Do you want to publish a course? Click here

Twin-width IV: ordered graphs and matrices

72   0   0.0 ( 0 )
 Added by \\'Edouard Bonnet
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We establish a list of characterizations of bounded twin-width for hereditary, totally ordered binary structures. This has several consequences. First, it allows us to show that a (hereditary) class of matrices over a finite alphabet either contains at least $n!$ matrices of size $n times n$, or at most $c^n$ for some constant $c$. This generalizes the celebrated Stanley-Wilf conjecture/Marcus-Tardos theorem from permutation classes to any matrix class over a finite alphabet, answers our small conjecture [SODA 21] in the case of ordered graphs, and with more work, settles a question first asked by Balogh, Bollobas, and Morris [Eur. J. Comb. 06] on the growth of hereditary classes of ordered graphs. Second, it gives a fixed-parameter approximation algorithm for twin-width on ordered graphs. Third, it yields a full classification of fixed-parameter tractable first-order model checking on hereditary classes of ordered binary structures. Fourth, it provides a model-theoretic characterization of classes with bounded twin-width.



rate research

Read More

We study the existence of polynomial kernels, for parameterized problems without a polynomial kernel on general graphs, when restricted to graphs of bounded twin-width. Our main result is that a polynomial kernel for $k$-Dominating Set on graphs of twin-width at most 4 would contradict a standard complexity-theoretic assumption. The reduction is quite involved, especially to get the twin-width upper bound down to 4, and can be tweaked to work for Connected $k$-Dominating Set and Total $k$-Dominating Set (albeit with a worse upper bound on the twin-width). The $k$-Independent Set problem admits the same lower bound by a much simpler argument, previously observed [ICALP 21], which extends to $k$-Independent Dominating Set, $k$-Path, $k$-Induced Path, $k$-Induced Matching, etc. On the positive side, we obtain a simple quadratic vertex kernel for Connected $k$-Vertex Cover and Capacitated $k$-Vertex Cover on graphs of bounded twin-width. Interestingly the kernel applies to graphs of Vapnik-Chervonenkis density 1, and does not require a witness sequence. We also present a more intricate $O(k^{1.5})$ vertex kernel for Connected $k$-Vertex Cover. Finally we show that deciding if a graph has twin-width at most 1 can be done in polynomial time, and observe that most optimization/decision graph problems can be solved in polynomial time on graphs of twin-width at most 1.
We recently introduced the graph invariant twin-width, and showed that first-order model checking can be solved in time $f(d,k)n$ for $n$-vertex graphs given with a witness that the twin-width is at most $d$, called $d$-contraction sequence or $d$-sequence, and formulas of size $k$ [Bonnet et al., FOCS 20]. The inevitable price to pay for such a general result is that $f$ is a tower of exponentials of height roughly $k$. In this paper, we show that algorithms based on twin-width need not be impractical. We present $2^{O(k)}n$-time algorithms for $k$-Independent Set, $r$-Scattered Set, $k$-Clique, and $k$-Dominating Set when an $O(1)$-sequence is provided. We further show how to solve weighted $k$-Independent Set, Subgraph Isomorphism, and Induced Subgraph Isomorphism, in time $2^{O(k log k)}n$. These algorithms are based on a dynamic programming scheme following the sequence of contractions forward. We then show a second algorithmic use of the contraction sequence, by starting at its end and rewinding it. As an example, we establish that bounded twin-width classes are $chi$-bounded. This significantly extends the $chi$-boundedness of bounded rank-width classes, and does so with a very concise proof. The third algorithmic use of twin-width builds on the second one. Playing the contraction sequence backward, we show that bounded twin-width graphs can be edge-partitioned into a linear number of bicliques, such that both sides of the bicliques are on consecutive vertices, in a fixed vertex ordering. Given that biclique edge-partition, we show how to solve the unweighted Single-Source Shortest Paths and hence All-Pairs Shortest Paths in sublinear time $O(n log n)$ and time $O(n^2 log n)$, respectively. Finally we show that Min Dominating Set and related problems have constant integrality gaps on bounded twin-width classes, thereby getting constant approximations on these classes.
A bipartite graph $G=(A,B,E)$ is ${cal H}$-convex, for some family of graphs ${cal H}$, if there exists a graph $Hin {cal H}$ with $V(H)=A$ such that the set of neighbours in $A$ of each $bin B$ induces a connected subgraph of $H$. Many $mathsf{NP}$-complete problems, including problems such as Dominating Set, Feedback Vertex Set, Induced Matching and List $k$-Colouring, become polynomial-time solvable for ${mathcal H}$-convex graphs when ${mathcal H}$ is the set of paths. In this case, the class of ${mathcal H}$-convex graphs is known as the class of convex graphs. The underlying reason is that the class of convex graphs has bounded mim-width. We extend the latter result to families of ${mathcal H}$-convex graphs where (i) ${mathcal H}$ is the set of cycles, or (ii) ${mathcal H}$ is the set of trees with bounded maximum degree and a bounded number of vertices of degree at least $3$. As a consequence, we can re-prove and strengthen a large number of results on generalized convex graphs known in the literature. To complement result (ii), we show that the mim-width of ${mathcal H}$-convex graphs is unbounded if ${mathcal H}$ is the set of trees with arbitrarily large maximum degree or an arbitrarily large number of vertices of degree at least $3$. In this way we are able to determine complexity dichotomies for the aforementioned graph problems. Afterwards we perform a more refined width-parameter analysis, which shows even more clearly which width parameters are bounded for classes of ${cal H}$-convex graphs.
The well-known Disjoint Paths problem is to decide if a graph contains k pairwise disjoint paths, each connecting a different terminal pair from a set of k distinct pairs. We determine, with an exception of two cases, the complexity of the Disjoint Paths problem for $H$-free graphs. If $k$ is fixed, we obtain the $k$-Disjoint Paths problem, which is known to be polynomial-time solvable on the class of all graphs for every $k geq 1$. The latter does no longer hold if we need to connect vertices from terminal sets instead of terminal pairs. We completely classify the complexity of $k$-Disjoint Connected Subgraphs for $H$-free graphs, and give the same almost-complete classification for Disjoint Connected Subgraphs for $H$-free graphs as for Disjoint Paths.
We study the dominating set reconfiguration problem with the token sliding rule. It consists, given a graph G=(V,E) and two dominating sets D_s and D_t of G, in determining if there exists a sequence S=<D_1:=D_s,...,D_l:=D_t> of dominating sets of G such that for any two consecutive dominating sets D_r and D_{r+1} with r<t, D_{r+1}=(D_r u) U v, where uv is an edge of G. In a recent paper, Bonamy et al studied this problem and raised the following questions: what is the complexity of this problem on circular arc graphs? On circle graphs? In this paper, we answer both questions by proving that the problem is polynomial on circular-arc graphs and PSPACE-complete on circle graphs.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا