Do you want to publish a course? Click here

Chord Embeddings: Analyzing What They Capture and Their Role for Next Chord Prediction and Artist Attribute Prediction

210   0   0.0 ( 0 )
 Added by Allison Lahnala
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Natural language processing methods have been applied in a variety of music studies, drawing the connection between music and language. In this paper, we expand those approaches by investigating textit{chord embeddings}, which we apply in two case studies to address two key questions: (1) what musical information do chord embeddings capture?; and (2) how might musical applications benefit from them? In our analysis, we show that they capture similarities between chords that adhere to important relationships described in music theory. In the first case study, we demonstrate that using chord embeddings in a next chord prediction task yields predictions that more closely match those by experienced musicians. In the second case study, we show the potential benefits of using the representations in tasks related to musical stylometrics.

rate research

Read More

Music is often experienced as a progression of concurrent streams of notes, or voices. The degree to which this happens depends on the position along a voice-leading continuum, ranging from monophonic, to homophonic, to polyphonic, which complicates the design of automatic voice separation models. We address this continuum by defining voice separation as the task of decomposing music into streams that exhibit both a high degree of external perceptual separation from the other streams and a high degree of internal perceptual consistency. The proposed voice separation task allows for a voice to diverge to multiple voices and also for multiple voices to converge to the same voice. Equipped with this flexible task definition, we manually annotated a corpus of popular music and used it to train neural networks that assign notes to voices either separately for each note in a chord (note-level), or jointly to all notes in a chord (chord-level). The trained neural models greedily assign notes to voices in a left to right traversal of the input chord sequence, using a diverse set of perceptually informed input features. When evaluated on the extraction of consecutive within voice note pairs, both models surpass a strong baseline based on an iterative application of an envelope extraction function, with the chord-level model consistently edging out the note-level model. The two models are also shown to outperform previous approaches on separating the voices in Bach music.
Pretrained contextualized embeddings are powerful word representations for structured prediction tasks. Recent work found that better word representations can be obtained by concatenating different types of embeddings. However, the selection of embeddings to form the best concatenated representation usually varies depending on the task and the collection of candidate embeddings, and the ever-increasing number of embedding types makes it a more difficult problem. In this paper, we propose Automated Concatenation of Embeddings (ACE) to automate the process of finding better concatenations of embeddings for structured prediction tasks, based on a formulation inspired by recent progress on neural architecture search. Specifically, a controller alternately samples a concatenation of embeddings, according to its current belief of the effectiveness of individual embedding types in consideration for a task, and updates the belief based on a reward. We follow strategies in reinforcement learning to optimize the parameters of the controller and compute the reward based on the accuracy of a task model, which is fed with the sampled concatenation as input and trained on a task dataset. Empirical results on 6 tasks and 21 datasets show that our approach outperforms strong baselines and achieves state-of-the-art performance with fine-tuned embeddings in all the evaluations.
In this note, we construct a chord index homomorphism from a subgroup of $H_1(Sigma, mathbb{Z})$ to the group of chord indices of a knot $K$ in $Sigmatimes I$. Some knot invariants derived from this homomorphism are discussed.
We present a new approach to harmonic analysis that is trained to segment music into a sequence of chord spans tagged with chord labels. Formulated as a semi-Markov Conditional Random Field (semi-CRF), this joint segmentation and labeling approach enables the use of a rich set of segment-level features, such as segment purity and chord coverage, that capture the extent to which the events in an entire segment of music are compatible with a candidate chord label. The new chord recognition model is evaluated extensively on three corpora of classical music and a newly created corpus of rock music. Experimental results show that the semi-CRF model performs substantially better than previous approaches when trained on a sufficient number of labeled examples and remains competitive when the amount of training data is limited.
We develop a novel approach to conformal prediction when the target task has limited data available for training. Conformal prediction identifies a small set of promising output candidates in place of a single prediction, with guarantees that the set contains the correct answer with high probability. When training data is limited, however, the predicted set can easily become unusably large. In this work, we obtain substantially tighter prediction sets while maintaining desirable marginal guarantees by casting conformal prediction as a meta-learning paradigm over exchangeable collections of auxiliary tasks. Our conformalization algorithm is simple, fast, and agnostic to the choice of underlying model, learning algorithm, or dataset. We demonstrate the effectiveness of this approach across a number of few-shot classification and regression tasks in natural language processing, computer vision, and computational chemistry for drug discovery.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا