Do you want to publish a course? Click here

Classification of Categorical Time Series Using the Spectral Envelope and Optimal Scalings

131   0   0.0 ( 0 )
 Added by Scott Bruce
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

This article introduces a novel approach to the classification of categorical time series under the supervised learning paradigm. To construct meaningful features for categorical time series classification, we consider two relevant quantities: the spectral envelope and its corresponding set of optimal scalings. These quantities characterize oscillatory patterns in a categorical time series as the largest possible power at each frequency, or spectral envelope, obtained by assigning numerical values, or scalings, to categories that optimally emphasize oscillations at each frequency. Our procedure combines these two quantities to produce an interpretable and parsimonious feature-based classifier that can be used to accurately determine group membership for categorical time series. Classification consistency of the proposed method is investigated, and simulation studies are used to demonstrate accuracy in classifying categorical time series with various underlying group structures. Finally, we use the proposed method to explore key differences in oscillatory patterns of sleep stage time series for patients with different sleep disorders and accurately classify patients accordingly.



rate research

Read More

We study causality between bivariate curve time series using the Granger causality generalized measures of correlation. With this measure, we can investigate which curve time series Granger-causes the other; in turn, it helps determine the predictability of any two curve time series. Illustrated by a climatology example, we find that the sea surface temperature Granger-causes the sea-level atmospheric pressure. Motivated by a portfolio management application in finance, we single out those stocks that lead or lag behind Dow-Jones industrial averages. Given a close relationship between S&P 500 index and crude oil price, we determine the leading and lagging variables.
A general Bayesian framework is introduced for mixture modelling and inference with real-valued time series. At the top level, the state space is partitioned via the choice of a discrete context tree, so that the resulting partition depends on the values of some of the most recent samples. At the bottom level, a different model is associated with each region of the partition. This defines a very rich and flexible class of mixture models, for which we provide algorithms that allow for efficient, exact Bayesian inference. In particular, we show that the maximum a posteriori probability (MAP) model (including the relevant MAP context tree partition) can be precisely identified, along with its exact posterior probability. The utility of this general framework is illustrated in detail when a different autoregressive (AR) model is used in each state-space region, resulting in a mixture-of-AR model class. The performance of the associated algorithmic tools is demonstrated in the problems of model selection and forecasting on both simulated and real-world data, where they are found to provide results as good or better than state-of-the-art methods.
Our goal is to estimate causal interactions in multivariate time series. Using vector autoregressive (VAR) models, these can be defined based on non-vanishing coefficients belonging to respective time-lagged instances. As in most cases a parsimonious causality structure is assumed, a promising approach to causal discovery consists in fitting VAR models with an additional sparsity-promoting regularization. Along this line we here propose that sparsity should be enforced for the subgroups of coefficients that belong to each pair of time series, as the absence of a causal relation requires the coefficients for all time-lags to become jointly zero. Such behavior can be achieved by means of l1-l2-norm regularized regression, for which an efficient active set solver has been proposed recently. Our method is shown to outperform standard methods in recovering simulated causality graphs. The results are on par with a second novel approach which uses multiple statistical testing.
We develop clustering procedures for longitudinal trajectories based on a continuous-time hidden Markov model (CTHMM) and a generalized linear observation model. Specifically in this paper, we carry out finite and infinite mixture model-based clustering for a CTHMM and achieve inference using Markov chain Monte Carlo (MCMC). For a finite mixture model with prior on the number of components, we implement reversible-jump MCMC to facilitate the trans-dimensional move between different number of clusters. For a Dirichlet process mixture model, we utilize restricted Gibbs sampling split-merge proposals to expedite the MCMC algorithm. We employ proposed algorithms to the simulated data as well as a real data example, and the results demonstrate the desired performance of the new sampler.
We introduce a class of semiparametric time series models by assuming a quasi-likelihood approach driven by a latent factor process. More specifically, given the latent process, we only specify the conditional mean and variance of the time series and enjoy a quasi-likelihood function for estimating parameters related to the mean. This proposed methodology has three remarkable features: (i) no parametric form is assumed for the conditional distribution of the time series given the latent process; (ii) able for modelling non-negative, count, bounded/binary and real-valued time series; (iii) dispersion parameter is not assumed to be known. Further, we obtain explicit expressions for the marginal moments and for the autocorrelation function of the time series process so that a method of moments can be employed for estimating the dispersion parameter and also parameters related to the latent process. Simulated results aiming to check the proposed estimation procedure are presented. Real data analysis on unemployment rate and precipitation time series illustrate the potencial for practice of our methodology.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا